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Abstract

Language typology has confirmed a considerable number of language universals, i.e., 1

the crosslinguistic correlation between two characteristics such as word order. For 2

example, OV (object–verb order) languages tend to have postpositions (Post), whereas 3

VO (verb–object order) languages tend to have prepositions (Pre). One of the 4

hypotheses to explain language universals is that languages with frequently observed 5

combinations of word orders are easily learnable. To test this hypothesis, the present 6

study examined the learnability of neural language models of synthetic languages 7

made from an English corpus. BERT and GPT-2 were trained with synthetic corpora 8

consisting of combinations of VO/OV, post-nomial relative clause (NRel)/pre-nomial 9

relative clause (RelN), and Pre/Post word orders. The results indicated that the 10

validation loss was the lowest for the original corpus with VO-NRel-Pre and the 11

second lowest for its complete opposite, OV-RelN-Post. Although OV-RelN-Post is 12

the most distant from the original, it is a frequently observed word-order combination. 13

These findings suggest that VO-NRel-Pre and OV-RelN-Post are word orders that are 14

easy to learn and, consequently, exhibit high evolutionary fitness. 15

Introduction 16

Although there are thousands of languages spoken in a wide variety of societies and 17

environments, linguists have noticed striking regularities among them. Since 18

Greenberg [1], language typology has confirmed a considerable number of language 19

universals, most of which are crosslinguistic correlations between two characteristics. 20

The most intensively investigated correlation is that between the word order of verbs 21

and their objects and the word order of other elements. OV (object–verb order) 22

languages tend to have postpositions, prenominal genitives, adverb–verb order, 23

clause-final complementizers, auxiliary verbs following verbs, and negative auxiliaries 24

following verbs, whereas VO (verb–object order) languages tend to have prepositions, 25

post-nomial relative clauses, verb–adverb order, clause-initial complementizers, 26

auxiliary verbs preceding verbs, and negative auxiliaries preceding verbs [1–4]. 27

Because no crosslinguistic correlation arises if the features are mutually 28

independent, linguistic typologists have proposed hypotheses to explain this 29

phenomenon. One hypothesis is that the frequently observed combinations of word 30

orders are easily learnable. Hawkins [5] argued that the frequently observed 31

combinations exhibit Cross-Category Harmony. In light of Cross-Category Harmony, 32

the word orders correlated with OV and VO are summarized as the heads following 33

and preceding their dependents, respectively. In other words, the consistency in the 34
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order of the heads and their dependents reduces cognitive load, and, consequently, 35

languages with consistency are more likely to appear. Theoretical frameworks such as 36

branching direction theory [4] and dependency length minimization [6] point in the 37

same direction. Another hypothesis is that crosslinguistic correlation is the result of 38

historical evolution reflecting the properties of ancestral languages [7, 8]. According to 39

this hypothesis, the observed language universals are not universal tendencies, but 40

rather lineage-specific traits. These two hypotheses are not mutually exclusive. Their 41

potential influence on language evolution should be measured individually. 42

Hence, we need to experimentally examine the learnability of languages with 43

various word-order combinations. Even if there is a strong history-dependency, the 44

rarity of a combination can be partly explained by the difficulty of learning it. The 45

learnability of word orders has been experimentally examined [9–11]. These 46

experiments investigated the performance of human subjects learning artificial 47

languages and found that frequent word orders are easily learnable. However, some 48

studies have reported that infrequent word orders are not necessarily less 49

learnable [12]. Although valuable findings have been obtained, excluding the influence 50

of the native and second languages remains difficult for such studies. 51

To avoid the difficulties arising from using human participants, some previous 52

studies have used neural networks. Recent advances in neural network models have 53

allowed language models such as BERT [13] and GPT-2 [14] to achieve human-level 54

performance in translation, question answering, and inference. Impressive performance 55

across the entire field of natural language processing suggests the similarity in 56

language processing between neural language models and humans. Under the 57

assumption that their processing is similar on a not-superficial level, the learnability of 58

a language can be examined by measuring the performance of a neural language model 59

on this language. On the basis of this assumption, neural network models have been 60

used in linguistic studies [15]. Artificial languages to be given as input to neural 61

network models have been developed [16]. Using this artificial language, Kuribayashi 62

et al. [17] showed that frequently observed word orders are more learnable. However, 63

algorithmically generated texts of an artificial language may not be as rich as those of 64

natural languages. To address this issue, a previous study [18] transformed the texts of 65

natural languages into a synthetic language with a different word order, which can be 66

more ethologically valid. However, that study focused on the effect of adding suffices 67

to mark cases and agreements and left the correlation of word orders for future work. 68

Hence, this paper reports the learnability of synthetic languages made from an 69

English corpus with various combinations of word orders by neural language models. 70

Typologically, English is an SVO language (comprising 42% of the world languages), 71

with mostly VO-correlated characteristics. However, English can also be easily 72

transformed into an SOV language (comprising 45% of the world languages), with 73

OV-correlated characteristics such as Japanese [19, 20]. Specifically, verb–object, 74

noun–relative clause, and preposition–noun orders are independently flipped to make 75

synthetic corpora that have the same vocabulary and the same number of words. 76

Word-order parameters are grouped as follows: flipping the verb–object order also flips 77

the adverb–verb, auxiliary verb–verb, and negative auxiliary–verb orders; flipping the 78

noun–relative clause order also flips the noun–genitive order; and flipping the 79

preposition–noun order also flips the complementizer–complement clause order. The 80

order of demonstrative, numeral, adjective, and noun, which is also an intensively 81

studied subject in language typology [21], is therefore preserved. Restricting the 82

number of parameters facilitates the implementation and reduces the error of 83

transformation, particularly in incomplete sentences and those containing 84

interjections. Neural language models were trained for eight training sets, and the 85

validation loss was measured. Both the loss for the masked language model, which 86
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predicts the masked words in a sentence, and the causal language model, which 87

predicts the next word, measure the learnability of the language. Comparing the 88

prediction loss for corpora in which only the word order is changed allows us to 89

measure the learnability of languages as a function of word order only. In other words, 90

the effect of Cross-Category Harmony proposed by Hawkins [5] on neural language 91

models is investigated. The present approach is advantageous because synthetic 92

languages can be more ethologically valid than algorithmically generated artificial 93

languages, and neural language models are not influenced by the effects of native and 94

second languages. Examining the learnability of synthetic languages by language 95

models, including neural language models, can explain crosslinguistic correlation free 96

from historical, biological, and psychological factors. 97

This paper is organized as follows. The Methods section describes the materials 98

and methods used in this paper. The corpus and the method of transformation, the 99

parameters of neural language models, and the measure of distance between sentences 100

are presented. The Results section reports the experimental results. Results with 101

various neural language models and token sizes are shown. The relative independence 102

of the loss from the distance from the original corpus is also shown. The frequent word 103

order-combinations exhibit lower loss, i.e., high learnability. In the Discussion section, 104

the results are compared with those from previous studies, and future perspectives are 105

given. 106

Methods 107

The training and validation sets were made from English v12 of OntoNotes 5.0 [22] as 108

follows. Three transformation parameters were defined. The first is a parameter for 109

flipping the order of verbs and their objects. Flipping the positions of the first verb 110

and the following clauses in VP and leaving them intact are referred to as OV and VO, 111

respectively. OV also flips adverbs and verbs, auxiliary verbs and verbs, and negative 112

auxiliaries and verbs, which is typical for OV languages [4]. Also, for OV, inversions in 113

SINV and SQ are converted to SOV. The second is a parameter for flipping the order 114

of nouns and their relative clauses (RelN) and preserving them (NRel). RelN also flips 115

nouns and genitives, nouns and their modifiers in NP, and adjectives and their 116

following clauses in ADJP. The third is a parameter for flipping adpositions and nouns 117

(Post) and preserving their order (Pre). Post flips prepositions and nouns in PP, NP, 118

and ADJP. Post also flips complementizers and complement clauses, which are also 119

frequently found in OV languages [4]. The combination of VO, NRel, and Pre, which 120

is the word order in the original English corpus, corresponds to V2 & N2 & Pr in 121

Hawkins (1983) [5], whereas the combination of OV, RelN, and Post corresponds to 122

V3 & N3 & and Po, which shows the smallest Cross-Category Harmony deviations. 123

The sentences were preprocessed as follows. All capitals were converted to their 124

lower cases to dispense with the need for consistent capitalization of proper nouns and 125

words at the beginning of sentences. Abbreviated verbs and auxiliaries such as “n’t,” 126

“’ve,” and “’re” were replaced with their corresponding unabbreviated forms. 127

Sentences containing rare characters such as those from foreign words were omitted. 128

Also, complicated sentences that were difficult to transform were omitted. 129

Punctuation marks were separated from words with white spaces. Sentences 130

containing VP without verbs and overly short sentences (fewer than four words) were 131

also omitted. The number of sentences decreased from 819 579 to 810 360 in the 132

training set and from 111 898 to 110 672 in the validation set. Of these, 1688 and 220 133

sentences, respectively, were omitted for reasons other than shortness. 134

The combinations of VO/OV, NRel/RelN, and Post/Pre yielded eight parallel 135

corpora with the same numbers of sentences and words. As shown in Table 1, all 136
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Table 1. Word order and block-interchange distance

Order Example d1 d2
VO-NRel-Pre this is the malt that lay in the house that jack built . 0 6
VO-NRel-Post this is the malt lay the house jack built that in that . 3 6
VO-RelN-Pre this is that lay in that jack built the house the malt . 2 6
VO-RelN-Post this is lay jack built that the house in that the malt . 3 6
OV-NRel-Pre this the malt that in the house that jack built lay is . 2 6
OV-NRel-Post this the malt the house jack built that in lay that is . 4 4
OV-RelN-Pre this that in that jack built the house lay the malt is . 3 6
OV-RelN-Post this jack built that the house in lay that the malt is . 4 4

corresponding sentences were made by reordering without adding or deleting words. 137

The corpora were tokenized by SentencePiece with white spaces as an obligatory token 138

separator [23]. Performance was then measured by cross-entropy loss, which is the 139

logarithm of the perplexity. 140

The language models used in this paper were BERT [13] and GPT-2 [14], both of 141

which are Transformer-based language models [24]. BERT is a masked language 142

model, whereas GPT-2 is a causal language model. To reduce GPU memory usage, 143

the dimensionality of the feed-forward layer in BERT was set to 768, and the number 144

of layers in GPT-2 was set to eight. The other parameters were set to their default 145

values. The training was performed for 50 epochs with a batch size of 16. The 146

language models and data loader were implemented using HuggingFace 147

Transformers [25]. 148

The distance of a synthesized sentence from the original sentence was measured by 149

the block-interchange distance [26]. The block-interchange distance is defined by the 150

minimal number of block interchanges, with which two substrings, or blocks, are 151

swapped to make the synthesized sentence from the original sentence. Table 1 shows 152

the block-interchange distance from the original sentence, d1, and that from the 153

reverse of the original sentence, d2. The minimum of d1 and d2 was used as the 154

distance d. The average of d for all sentences in a corpus was used as the distance of 155

the corpus from the original corpus. 156

Results 157

Eight parallel corpora were made by independently flipping OV/VO, NRel/RelN, and 158

Post/Pre. The numbers of words and tokens in corresponding sentences were kept 159

unchanged. The training was performed for 50 epochs, during which, the validation 160

loss was compared between corpora to measure the learnability of each one. This was 161

considered a fair comparison because all the corpora were permutations of the same set 162

of tokens. The original corpora with VO-NRel-Pre and OV-RelN-Post were expected 163

to exhibit low validation loss because they are frequently found combinations. 164

Fig 1 shows the time course of the validation losses with BERT. Each curve 165

corresponds to one run for each corpus with 5000 tokens. The loss was the lowest for 166

the original corpus (VO-NRel-Pre) and the second lowest for OV-RelN-Post. As 167

expected, the frequently found combinations exhibited the lowest validation losses, 168

indicating that the prediction is easiest. The scatterplots in Fig 2 show the validation 169

losses of BERT at the 10th, 20th, 30th, 40th, and 50th epochs for 10 runs each. 170

VO-NRel-Pre and OV-RelN-Post were consistently the best and second best, 171

respectively. The corpora with low validation loss at an early stage exhibited low 172

validation loss at a late stage. However, the absolute difference in the validation losses 173

among the corpora decreased at a late stage. This suggests that the difference in 174
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Fig 1. Time course of validation losses for BERT with 5000 tokens.
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Fig 2. Validation losses for BERT at 10th, 20th, 30th, 40th, and 50th epochs with
token size of 5000 for 10 runs each.

learnability is prominent in the early stage of learning. Fig 3 shows the validation 175

losses at the 10th and 50th epochs for the token sizes of 10 000 and 20 000. 176

VO-NRel-Pre and OV-RelN-Post consistently exhibited low validation loss, although 177

VO-RelN-Pre also exhibited low validation loss at the 50th epoch. 178

Because these results were obtained with BERT (a masked language model), 179

GPT-2 (a causal language model) was examined to test generality. Similar to BERT, 180

GPT-2 exhibited the lowest validation losses for VO-NRel-Pre and OV-RelN-Post 181

(Fig 4). Although BERT and GPT-2 have different structures and training strategies, 182

this result suggests that these language models have common preferences regarding 183

word-order correlation. 184

However, validation loss may reflect similarity to the original corpus, but not its 185

learnability. Specifically, OV-RelN-Post reverses the order of most elements, sparing 186

only the orders of subjects and verbs and of adjectives and nouns. If OV-RelN-Post 187

sentences are the almost complete reverse of VO-NRel-Pre sentences, they may exhibit 188

almost the same high level of learnability. Because BERT does not distinguish a 189

sentence from its reverse, this possibility must be examined. To exclude this 190
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Fig 3. Validation losses for BERT at 10th and 50th epochs with token sizes of 10 000
and 20 000 for 10 runs each.
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Fig 4. Validation losses for GPT-2 at 10th and 50th epochs with token sizes of 5 000,
10 000, and 20 000 for 10 runs each.
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Fig 5. Average distance d of sentences in each corpus from those in original
(VO-NRel-Pre).

possibility, the distance of synthesized from original sentences was measured. This 191

distance was defined by the minimal number of block interchanges needed to 192

transform the synthesized sentence to the original and its reverse. The average 193

distances d of the sentences in each corpus from those in the original corpus are shown 194

in Fig 5. The average distance of the OV-RelN-Post corpus was the greatest, although 195

the validation loss was the lowest among the synthetic corpora. Remarkably, 196

VO-RelN-Pre, which exhibits a low validation loss in Fig 3, was the corpus with the 197

minimal distance to the original. Hence, the validation loss is dependent on, but not 198

completely determined by, the distance from the original sentence or the reverse, 199

suggesting that the validation loss can measure learnability. 200

Discussion 201

This paper examined whether neural language models can predict words in a text 202

more easily for frequently observed word-order combinations. Specifically, instead of 203

the corpora of an artificial language, corpora synthesized from a natural language 204

corpus were used to ensure ethological validity. In addition, the corpora were 205

synthesized by reordering the words without additions or deletions to ensure the 206

fairness of the comparison. The validation losses for the language models were lowest 207

for VO-NRel-Pre, the original text, and second lowest for OV-RelN-Post, which is 208

frequently observed. The validation loss for OV-RelN-Post was greater than that for 209

VO-NRel-Pre. This may have been because OV-RelN-Post is indeed more difficult to 210

learn than VO-NRel-Pre, or because there were transformation errors. If 211

OV-RelN-Post is difficult to learn in itself, this result is consistent with a previous 212

study [18]. The difficulty of learning OV-RelN-Post may be explained by the greater 213

dependency length of head-final languages such as Japanese, Korean, and Turkish [6]. 214

This may be a reason for the fact that the syntactic change from SOV to SVO is more 215

frequent than that from SVO to SOV [27]. If the higher validation loss for 216

OV-RelN-Post is an artifact, this may be because the relative clause was not placed 217

properly in the sequence of demonstrative, numeral, adjective, and noun. Placing 218
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prepositional phrases between articles and nouns, as in German, may improve the 219

validation loss for OV-RelN-Post. Also, adding case markers to distinguish subjects 220

from objects might improve the validation loss, as suggested in a previous study [18]. 221

In any case, it is noteworthy that the validation losses for the corpora closer to the 222

original were in most cases greater than that for OV-RelN-Post. This suggests that 223

language models exhibit a preference analogous to language universals. In the present 224

experiment, although OV-RelN-Post was slightly less easily learnable than 225

VO-NRel-Pre, it was more easily learnable than the others. These results suggest that 226

the frequent word-order combinations are more learnable than their partially modified 227

combinations. Less frequent word-order combinations might be less easily learnable for 228

language models because of their greater dependency length. 229

Along with other studies [16–18,28], the present study indicates the effectiveness of 230

the neural network modeling approach to language typology. This study examined the 231

relationships among OV/VO, RelN/NRel, and Post/Pre word-order parameters. By 232

contrast, Ravfogel et al. [18] examined the relationships between 233

SVO/SOV/VOS/VSO/OSV/OVS and polypersonal agreement and case systems. To 234

this end, they added suffices, whereas the present study did not. Thus, their study 235

and the present study are complementary. 236

Together with previous studies, the present study indicates that some language 237

universals originate from the common properties of the human brain and neural 238

networks. Masked language models such as BERT and causal language models such as 239

GPT-2 are quite successful in natural language processing and exhibit human-like 240

generalization. However, these models do not have any special mechanism to realize 241

human-like induction bias. Presumably, information processing systems with diverse 242

internal structures can exhibit preferences similar to language universals as long as 243

they have sufficient capacity. 244

However, this does not mean that all the typological features can be explained by 245

efficient information processing systems, including neural language models. Because 246

the SOV word order emerges in gesture-production experiments [29], embodied 247

artificial intelligence might explain a wider range of language universals. In a different 248

cognitive experiment, native speakers of left- and right-branching languages were 249

found to recall initial and final stimuli better, respectively [30]. The same bias might 250

be found for multimodal neural networks depending on the languages used in training. 251

Recent advances in speech generation with neural network models may shed light on 252

the relationship between the phonetic property and meaning of words. 253

The connection between the frequency of languages and their learnability by 254

human subjects and neural language models has been criticized by cultural evolution 255

and language typology itself. Rafferty et al. [31] called attention to the fact that easily 256

learnable languages are not necessarily prevalent because there may be a vast number 257

of less easily learnable languages. Indeed, the difference in validation loss may not be 258

sufficiently large to prevent infrequent combinations from emerging. Thus, the present 259

study does not preclude the cultural evolution explanation. However, among several 260

options, such as the eight corpora examined in the present study, easily learnable 261

language can be dominant. Although Dunn et al. [8] argued that the co-occurrence of 262

language features is better fitted by evolutionary models, learnability as evolutionary 263

fitness can play a role in language evolution. Studies using synthetic corpora can 264

measure the fitness of a language with a combination of features. It has been suggested 265

that word orders such as OV and VO are not categorical, but rather, gradient [32]. 266

Further study is needed to examine the gradient variation in word order. To respond 267

to these criticisms, it is worth exploring the variety of learnable and generatable 268

languages using neural network models. More specifically, this could be examined by 269

investigating whether a language-like structure emerges if a neural network needs to 270
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linearize the latent representation to a sequence of a small number of tokens. If the 271

manner of linearization were similar to known human languages, learnability would be 272

proven to be essential in the evolution of language. This would also be a test for the 273

string-context mutual segmentation hypothesis on the origin of human language [33]. 274
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