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Abstract. Central auditory neurons exhibit a preference for complex
features, such as frequency modulation and pitch. This study shows that
the stimulus preference for these features can be replicated by a network
model trained to maximize information transmission from input to out-
put. The network contains three layers: input, first-output, and second-
output. The first-output-layer neurons exhibit auditory-nerve neuron-like
preferences, and the second-output-layer neurons exhibit a stimulus pref-
erence similar to that of cochlear nucleus, medial geniculate, and audi-
tory cortical neurons. The features detected by the second-output-layer
neurons reflect the statistical properties of the sounds used as input.
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1 Introduction

Neurons in the auditory system of the brain can detect multiple dimensions
of the complex features of sounds. For example, human speech is composed
of a series of combinations of features such as phoneme, tone, stress, length,
and prosody. The precise timing and temporal variation of these features convey
critical information about the content of speech. To correctly comprehend human
speech, an auditory system must be able to detect the features precisely and
encode these features in the firing patterns of neurons.

The neural encoding of sensory inputs has been intensively studied both
experimentally and theoretically. Experiments on auditory information process-
ing have revealed that auditory-nerve neurons respond to sine wave-like tones
[1] and that central auditory neurons encode complex features such as sound
intensity and pitch. More than half of medial geniculate neurons in cats exhibit
non-monotonic rate-sound-intensity functions [2], which implies that these neu-
rons can be interpreted as intensity-coding neurons. Bendor and Wang reported
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that neurons in the auditory cortex of marmoset monkeys responded to both
pure tones and missing fundamental harmonic complex sounds and called them
pitch-selective neurons [3]. This type of high-level feature selectivity is thought
to have emerged as a result of the integration of simpler low-level feature selec-
tivity, such as that exhibited by auditory-nerve neurons, in a circuit with hier-
archical structure. Hierarchical structure has been widely used in the theoretical
modeling of visual information processing [4-7]. Theoretical studies of visual
processing have demonstrated that stimulus selectivity to complex features such
as the boundary between two gratings emerges in a generative model of natural
scenes [8,9] and in network models that maximize the amount of information
conveyed by the output [7,10]. These studies suggest that feature representation
in the auditory system can be understood on the basis of a similar framework.
In fact, a previous model of auditory feature representation [11] showed that
units representing complex auditory features emerged in a generative model of
sounds. However, the “spikes” in this model were generated by the maximum
likelihood estimation, and therefore whether neurons can perform such a com-
putation remains unclear. Moreover, complex auditory feature detection has not
been treated in terms of maximizing information transmission.

Therefore, this study examines auditory feature detection in a feedforward
network of rate-coding neuron models using an algorithm based on the informa-
tion maximization principle. The network consists of three layers: input, first-
output, and second-output. Short waveforms from a natural sounds dataset and
a human speech corpus are provided to the input layer. The first-output-layer
neurons respond to the wavelet-like waveforms. The second-output-layer neu-
rons encode more complex features, such as pitch, tone intensity, and upward
and downward frequency modulation. The selectivity of these model neurons for
these complex features is comparable to that of experimentally reported cochlear
nucleus, medial geniculate, and auditory cortical neurons. These results suggest
that the central auditory neurons can be understood in terms of information
maximization and that an extended network model based on the information
maximization principle could replicate the more complex feature detection of
the auditory cortices.

2 Model

The Pittsburgh natural sounds dataset [12] was used as the natural-sound input,
and the Priority Areas “Spoken Dialogue” Simulated Spoken Dialogue Corpus
(PASD) was used as the human-speech input. The former was down-sampled to
11kHz, and the latter was down-sampled to 8 kHz. The input time series was
shifted and scaled to have zero mean and unit variance. Consecutive samples
(N = 200) were randomly chosen from the input time series to be used as input
to the network at each time step. The network model and learning algorithm
described previously [7] were used. The network consists of input, first-output,
and second-output layers, each containing N model neurons. The value of the
i-th input at time step ¢ is x;(¢). The states of the neurons in the first- and
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second-output layers at time ¢ are determined by

N
Z Vijzi(t) | (1)

and
N

Z |u] m) ’ (2)

respectively, where V;; is the connection weight from the input neuron j to the
first-output-layer neuron i, Wj; is the connection weight from the first-output-
layer neuron j to the second-output-layer neuron i, m is the average of |u;(t)]
over time, and

f(z) = 2arctan tanh g (3)

is the activation function. The integration time constant 7 was set to 10* steps in
all simulations. The weights V;; were updated once every 1000 steps. The updates
of the matrices V and W were performed 10* times with € = €y, 1.9 x 10° times
with € = 10¢g, and 8 x 10° times with € = ¢ using the Newton method described
in [7], where ¢y = 107° for natural-sound input and ¢y = 10~ for human-speech
input.

3 Results

3.1 First-Output-Layer Neurons

The input and first-output layer can be regarded as a network performing inde-
pendent component analysis [6]. Similar to a previous study of independent com-
ponent analysis [13], the first-output-layer neurons exhibit selectivity to Gabor
wavelet-like sound waveforms. Figure 1A shows the column vectors of V!, sound
waveforms that the first-output-layer neurons are selective for, of the network
in which natural sounds are used as the input. They have Gabor function-like
shapes with different frequencies, amplitudes, phases, dispersions, and center

(msec) (msec)

Fig. 1. Preferred sound waveform of 20 first-output-layer neurons in networks with (A)
natural-sound input and (B) human-speech input.
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positions. Figure 1B shows the selectivity of the first-output-layer neurons with
human-speech input. The waves in Fig. 1B resemble sine waves without ampli-
tude modulation because the majority of human speech is composed of vowels.
Selectivity to these sine waves with and without amplitude modulation is similar
to the stimulus preference of auditory-nerve neurons [1,13].

The response of these neurons to continuous sine waves is shown in Fig. 2.
The horizontal and vertical axes represent the frequency and amplitude of sine
waves, respectively. The density represents the maximal value of the first-output-
layer neuron output obtained by varying the phases of the sine waves. Almost
all neurons respond to a small-amplitude tone with the preferred frequency and
to a wide range of tones if the amplitude is increased. This figure shows that
the wavelet-like connection weights result in unimodal, V-shaped tuning curves
with only one preferred frequency [14].
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Fig. 2. Tuning curve of first-output-layer neurons in networks with (A) natural-sound
input and (B) human-speech input.

3.2 Second-Output-Layer Neurons

Figure 3 shows the connection weights from the first-output-layer neurons to the
second-output-layer neurons in the networks with natural-sound and human-
speech inputs. Each box corresponds to a second-output-layer neuron, and each
line in the box corresponds to the connection weight from a first-output-layer
neuron to the second-output-layer neuron. The vertical position of a line in the
box represents the preferred frequency of the first-output-layer neuron obtained
by fitting the row vector of V! with the Gabor function, that is, w of

g(t) = exp[—(t — t9)?/(2m0?)] sin(wt + ¢). (4)

The horizontal position and the length of the line represent ¢ty and o, respectively.
The color represents the value of the connection weight W;;, with red and blue
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Fig. 3. Connection weights from first- to second-output-layer neurons for the networks
with (A) natural-sound input and (B) human-speech input. The second-output-layer
neurons are represented as boxes. Connections from the first-output-layer neurons cor-
respond to the horizontal lines, whose vertical position, horizontal position, and length
represent w, to, and o of the fitted Gabor function, respectively. Red and blue indicate
positive and negative connection weights, respectively. (Color figure online)

indicating positive (excitatory) and negative (inhibitory) connection weights,
respectively.

The stimulus selectivities exhibited by the first-output-layer neurons in the
networks with natural-sound and human-speech inputs are substantially different
from each other. Because the difference in the stimulus preference of the first-
output-layer neurons affects the stimulus preference of the second-output-layer
neurons, Figs. 3A and B show completely different types of stimulus preferences
in these two networks. Therefore, the results of the two networks with different
inputs are presented separately.

Natural Sounds

Frequency-Modulation Selectivity. Second-output-layer neuron a in Fig.3A
receives positive connection weights from first-output-layer neurons selective for
low-frequency tones in the earlier half and for high-frequency tones in the lat-
ter half, while it receives negative connection weights from neurons selective for
high-frequency tones in the earlier half and for low-frequency tones in the latter
half. Therefore, this neuron is selective for a frequency change from a low tone
to a high tone. Selectivity to frequency modulation is found in more than half
of the neurons in the cochlear nucleus [15]. Neuron a appears to correspond to
these cochlear nucleus neurons responsive to frequency modulation.

Intensity Tuning. Figure 4A shows the tuning curves of the second-output-layer-
neurons trained with natural-sound input. These tuning curves are much more
variable than those of the first-output-layer neurons (Fig.2A). Tuning curve b
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Fig. 4. Tuning curves of second-output-layer neurons with (A) natural-sound input
and (B) human-speech input.

in Fig.4A has two preferred frequencies; this suggests that this neuron receives
strong positive connection weights from two first-output-layer neurons with dif-
ferent frequency preferences, which is evident in Fig.3A (b). This is similar to
auditory cortical neurons classified as double U-shaped tuning curves [16]. The
tuning curve ¢ (Fig.3A) is similar to circumscribed neurons in the auditory
cortex [16], which do not respond to increased amplitude of sine waves at any
frequency. Therefore, this neuron is selective for a tone with a specific frequency
and intensity level. Physiologically, this type of neuron is reported to compose
approximately 20 % of the neurons in a cat’s auditory cortex [16].

Human Speech

Pitch Selectivity. Figure 3B shows the connections from first- to second-output-
layer neurons in the network with human-speech input. Some of these neurons
receive positive inputs from first-output-layer neurons with preferred frequen-
cies that are multiples of a value (neuron d). That is, these neurons respond to
the pitch of a tone, and, consequently, have intensive multimodal tuning curves
(Fig. 4, neuron d). This type of stimulus preference has been reported in audi-
tory cortical neurons [16]. Because the present learning algorithm maximizes the
information transmission from input to output, this result suggests that pitch
selectivity in the auditory cortex emerges to encode human and other animal
voices efficiently. Indeed, human voices are primarily composed of tones with a
principal frequency and its higher harmonics. Owing to this statistical property
of human voices, second-output-layer neurons acquire selectivity to tones with
frequencies f, 2f, 3f, ... during training.

4 Discussion

This study presented the properties of model neurons in networks trained to max-
imize the amount of information transmitted to the output layers, using natural
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sounds and human speech as inputs. The first-output-layer neurons respond to
wavelet-like stimuli and have unimodal tuning curves. This property is consistent
with the experimentally reported properties of auditory-nerve neurons [1]. It is
also consistent with previous theoretical studies [11,13], showing that wavelet-
like functions are information-efficient in encoding natural sounds. The proper-
ties of the second-output-layer neurons are affected by the type of input. Natural
sounds, which contain abundant abrupt changes in pitch, favor the emergence
of second-output-layer neurons selective for pitch change. In contrast, human
voices are dominated by continuous waves with higher harmonics, making pitch
selectivity advantageous in encoding information. These properties are also con-
sistent with previous experimental and theoretical results [3,11,15].

The training algorithm of the present model is based on the information
maximization principle, that is, the information conveyed by the output neu-
rons is maximized during training. The fact that neurons in the two output
layers exhibit stimulus preferences similar to the cochlear nucleus, medial genic-
ulate, and auditory cortical neurons suggests that the neurons in the central ner-
vous system have evolved to encode as much information as possible by forming
an information-efficient circuit. This is corroborated by previous studies which
showed that the properties of simple and complex cells in the primary visual
cortex can be replicated by the information maximization model [7,17]. If, as
suggested by the present model, the sensory information processing in the cen-
tral nervous system can be understood in terms of information maximization, a
model with a larger number of layers would replicate and predict the properties
of neurons in the higher sensory cortices.
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