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Abstract

Recently, multineuronal recording has allowed us to observe patterned firings, syn-
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chronization, oscillation, and global state transitions in the recurrent networks of cen-

tral nervous systems. We propose a learning algorithm based on the process of infor-

mation maximization in a recurrent network, which we call “recurrent infomax” (RI).

RI maximizes information retention and thereby minimizes information loss through

time in a network. We find that feeding in external inputs consisting of information

obtained from photographs of natural scenes into an RI-based model of a recurrent

network results in the appearance of Gabor-like selectivity quite similar to that exist-

ing in simple cells of the primary visual cortex. We find that without external input,

this network exhibits cell assembly-like and synfire chain-like spontaneous activity as

well as a critical neuronal avalanche. In addition, we find that RI embeds externally

input temporal firing patterns to the network so that it spontaneously reproduces these

patterns after learning. RI provides a simple framework to explain a wide range of

phenomena observed in in vivo and in vitro neuronal networks, and it will provide a

novel understanding of experimental results for multineuronal activity and plasticity

from an information-theoretic point of view.

1 Introduction

Recent advances in multineuronal recording have allowed us to observe phenomena in the networks

of the central nervous system (CNS) that are much more complex than previously thought to exist.

The existence of interesting types of neuronal activity, such as patterned firings, synchronization,

oscillation, and global state transitions has been revealed by multielectrode recording and calcium

imaging (Nadasdy et al., 1999; Cossart et al., 2003; Ikegaya et al., 2004; Fujisawa et al., 2006;

Sakurai and Takahashi, 2006). However, in contrast to the rapidly accumulating experimental
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data, theoretical works attempting to account for this wide range of data have been slower to

materialize. These new data are partly explained by the classical hypotheses proposed purely on

theoretical grounds, such as the “cell assembly” of Donald Hebb (Hebb, 1949). However, to explain

a wider range of data, we have to extend the classical hypotheses on the basis of mathematics and

information sciences.

We hypothesize that these characteristic types of neuronal activity in CNSs can be explained

by a theoretical model based on “infomax.” The process of information maximization (infomax

(Linsker, 1988)) maximizes the information transmission from the input to the output of a feed-

forward network (Fig. 1A). In this paper, information is defined as in the information theory

proposed by Shannon 60 years ago (Shannon, 1948), which has been successfully applied to electri-

cal engineering, computer science, and physics (Cover and Thomas, 2006). In information theory,

“information” is measured on the basis of the probability P (x) that a system takes state x. For

example, P ([1, 0, 0, 1]) = 0.01 means that the relative frequency of occurrence that the first and

fourth neurons fire and the second and third ones remain silent is one percent over the duration of

a long trial. Mutual information I(X;Y ) of two discrete random variables X and Y with a joint

probability distribution P (x, y), x ∈ X , y ∈ Y and marginal probability distribution P (x) and

P (y) is defined by

I(X;Y ) =
∑
x∈X

∑
y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
= I(Y ;X),

where X and Y are the sets of states. Taking logarithms to base 2, we can measure the mutual

information in bits. Mutual information I(X;Y ) is the information shared by input X and output

Y . In other words, it measures the reduction in the uncertainty of X due to the the knowledge

of Y and vice versa. Thus, maximizing the mutual information of the input and output improves

the information transmission in a feedforward network. It has been proposed that infomax in

feedforward networks may provide an explanation of the stimulus selectivity of neurons in CNSs
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(Tsukada et al., 1975; Atick, 1992; Bell and Sejnowski, 1995; Olshausen and Field, 1996; Bell and

Sejnowski, 1997; Lewicki, 2002). However, CNSs contain not only feedforward but also recurrent

synaptic connections (Fig. 1B), which endow networks with many interesting phenomena, some

of which have been reported recently and several researchers have attempted to model (Diesmann

et al., 1999; Maass et al., 2002; Buonomano, 2005; Vogels and Abbott, 2005; Teramae and Fukai,

2007). Therefore, we attempted to extend infomax to the case of recurrent networks, in which the

input to the neurons at time t consists of their own output at time t− 1 (Fig. 1C).

More specifically, a learning algorithm based on infomax in feedforward networks generates

information-efficient representation of the input in the output neurons of the feedforward network

(Fig. 2A1 and A2). This algorithm adjusts the connection weights to realize the most efficient

information transfer from the input to the output. In this way, a network with small mutual infor-

mation of input and output, that is, large information loss (Fig. 2A1), evolves into a network that

preserves a larger percentage of information (Fig. 2A2) through this algorithm. If the optimization

based on infomax is applied to a recurrent network in which the input to the neurons at time t

consists only of their own output at time t − 1, the mutual information of two successive states,

I(X; X̂), is maximized; that is, the information loss through time is minimized. We call this form

of infomax “recurrent infomax” (RI). An algorithm based on RI readjusts the connection weights

of the recurrent network to change a random network with large information loss (Fig. 2B1) into an

information-efficient network (Fig. 2B2). The role of RI is to allow a recurrent network to optimize

the synaptic connection weight in order to maximize information retention and thereby minimize

information loss by maximizing the mutual information of the temporally successive states of the

network.

In this paper, proposing a learning algorithm based on RI, we find that feeding in external

inputs consisting of information obtained from photographs of natural scenes into an RI-based
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model of a recurrent network results in the appearance of Gabor-like selectivity quite similar to

that existing in simple cells of the primary visual cortex (V1). More importantly, we find that

without external input, this network exhibits cell assembly-like and synfire chain-like stereotyped

spontaneous activity (Hebb, 1949; Abeles, 1991; Diesmann et al., 1999) and a critical neuronal

avalanche (Beggs and Plenz, 2003; Teramae and Fukai, 2007; Abbott and Rohrkemper, 2007). RI

provides a simple framework to explain a wide range of phenomena observed in in vivo and in

vitro neuronal networks, and it should provide a novel understanding of experimental results for

multineuronal activity and plasticity from an information-theoretic point of view.

2 Methods

Here we briefly describe our recurrent network model, leaving the details of the derivation to

Appendix A. In this model, N neurons are connected according to the weight matrix Wij, and

their firing states [xi(t) = 1 (fire) and 0 (quiescent)] at time step t are synchronously updated to

time step t+ 1. The firing state xi(t+ 1) of neuron i at time step t+ 1 is determined stochastically

with the firing probability

pi(t+ 1) =
pmax

1 + exp
(
−
∑

jWij(xj(t)− p̄j) + hi(t)
) , (1)

where hi(t) is the threshold of neuron i, and pmax is the maximal firing probability. When the

maximal firing probability pmax = 0.5, a neuron fires on average once every two time steps, even if

the neuron receives a sufficiently strong excitatory input at every time step. A small value of pmax

thus makes the firing of the neurons quite unreliable. In contrast, if pmax is close to 1, it is highly

probable that a strong input makes a neuron fire. Thus, pmax determines the reliability with which

a model neuron fires in response to an input.

To fix the mean firing probability of neurons i to p̄i, we update the threshold of neuron i, hi(t),
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at each step according to

hi(t+ 1) = hi(t) + ∆hi(t+ 1)

= hi(t) + ε(xi(t+ 1)− p̄i), (2)

where the learning rate ε for the threshold is set to 0.01 in all simulations. Eq. 2 fixes the mean

firing probability of neuron i in a manner that the threshold rises when the neuron fires and the

threshold falls when the neuron remains silent. When the firing states and the thresholds are

updated by Eqs. 1 and 2 for a sufficiently long sequence of time steps, hi(t) stops increasing or

decreasing and starts fluctuating around a certain value. Then, the time-average of the second

term of the righthand side of Eq. 2 vanishes, and thereby the time-average of xi(t), that is, the

firing rate of neuron i becomes equal to p̄i. Thus, the mean firing probability is fixed to p̄i.

Input xi(0) to the neurons at the first step t = 1 of the simulation was set to 0, and in the

following steps xi(t) was determined stochastically with Eq. 1. Unless otherwise stated, the neurons

in the model network do not have other inputs than their outputs at the previous step, and thereby

the dynamics of the network are completely determined by Eqs. 1 and 2 (Fig. 3A).

We performed simulations in blocks consisting of 20,000-100,000 time steps, updated Wij at

the end of each block, and then started the calculation for the next block (Fig. 3B). Outputs of

the neurons at the last step of block b− 1 were given as inputs to the neurons at the first step of

block b. A simulation consists of 500-15,000 blocks.

To maximize information retention, our recurrent network starts from a random weight W initial
ij

and develops toward an optimized network with W optimized
ij . The evolution of the weight matrix is

determined by the gradient ascent algorithm,

Wij(b+ 1) = Wij(b) + ∆Wij(b)

= Wij(b) + η
∂I(b)

∂Wij

, (3)
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where Wij(b) is the connection weight Wij in block b and I(b) is the mutual information of two

successive states of the network in block b and η is the learning rate. To avoid Wij increasing

without bound, it is bounded above and below by wlimit and −wlimit, respectively.

We define the approximate mutual information in block b of two states separated by n−1 steps

by

I(n)(b) = log |C| − 1

2
log |D(n)|,

where

C =


E11 · · · E1N

...
. . .

...

EN1 · · · ENN

 ,

D(n) =



E11 · · · E1N E
(n)

11̂
· · · E

(n)

1N̂

...
. . .

...
...

. . .
...

EN1 · · · ENN E
(n)

N 1̂
· · · E

(n)

NN̂

E
(n)

1̂1
· · · E

(n)

1̂N
E

(n)

1̂1̂
· · · E

(n)

1̂N̂

...
. . .

...
...

. . .
...

E
(n)

N̂1
· · · E

(n)

N̂N
E

(n)

N̂ 1̂
· · · E

(n)

N̂N̂



,

Eij =
1

T

∑
t∈T (b)

(xi(t)− p̄i)(xj(t)− p̄j),

E
(n)
ı̂j =

1

T

∑
t∈T (b)

(xi(t+ n)− p̄i)(xj(t)− p̄j),

E
(n)
î =

1

T

∑
t∈T (b)

(xi(t)− p̄i)(xj(t+ n)− p̄j),

E
(n)
ı̂̂ =

1

T

∑
t∈T (b)

(xi(t+ n)− p̄i)(xj(t+ n)− p̄j),

T (b) is the set of latter half of steps in block b, and T is half of the number of steps contained

in a block, that is, T = #T (b). The connection weights Wij are updated using correlation in the

latter half of steps in a block to let hi(t) converge in earlier half of steps in this block after Wij
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was updated. I(1) is an approximation of mutual information of two successive states, I(X; X̂), to

be maximized (see Appendix A for derivation).

The gradient of the mutual information with respect to connection weight is approximated by

∂I(b)

∂Wkl

≈ 1

2

∑
1≤i≤N
1≤j≤N

(1− δij)(Eı̂k̂Êl + Eı̂lÊk̂)(2(C−1)ji − (D−1)ji − (D−1)j+N i+N)

−1

2
((1− 2p̄k)(1− 2p̄l)Ek̂l + p̄kp̄l(1− p̄k)(1− p̄l)− E2

k̂l
)((D−1)l k+N + (D−1)k+N l),

where Eı̂j = E
(1)
ı̂j , Eî = E

(1)
î , Eı̂̂ = E

(1)
ı̂̂ , and D = D(1). Fig. 4 shows that the approximate mutual

information increased through this algorithm in the learning process of the simulation shown in

Fig. 5.

All models in this paper can be fully characterized by parameters N (50-432), p̄i (0.002-0.05),

pmax (0.5-0.95), η (0.2-20), ε (0.01), and wlimit (100-1000). Parameter values used in simulations

are included in figure captions. At the beginning of the simulation, Wij was drawn from a uniform

distribution on [−0.5, 0.5] and hi was set to 0.

In the simulation depicted in Fig. 5, the input image was converted to a gray-scaled image and

then high-pass filtered using an exponential filter with the frequency response

L(f) = exp(−(f/fc)
4),

where the cut-off frequency is fc = 256 (Olshausen and Field, 1997). The processing in the early

visual systems such as the retina and lateral geniculate nucleus can be regarded as high-pass

filtering, and the output neurons correspond to the neurons in V1. The filtered image data was

used to generate firing patterns of input neurons by taking 12×12 randomly selected image patches

and then converting these to 288 binary inputs. The on-input and off-input neurons fired only when

the intensities of the corresponding pixels had positive and negative signs, respectively. For each

pixel i of the input, α|di| was compared to a random value u drawn from a uniform distribution on
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[0, 1], where di is the intensity of pixel i = 1 . . . 144, and α is a constant parameter. If α|di| > u,

the state of the corresponding input neuron was set to 1, and if α|dn| ≤ u, it was set to 0. We

set the parameter α to fix the mean firing probability of the input neurons around 0.15. Under

this condition, the pixels caused the firing of the input neurons with a probability proportional to

its intensity, except for 5% of the pixels, whose intensities were larger than 1/α. The simulation

program was written in C++.

3 Results

We first observed the behavior of this model network under external input. Image patches from

a photograph preprocessed by a high-pass filter were used as the external input (Fig. 5A). The

neurons in this network were divided into three groups: 144 on-input and 144 off-input neurons,

and the 144 output neurons were randomly selected from the network (Fig. 5B1). Pixels with

positive and negative values in a randomly selected 12× 12 image patch excited the corresponding

on-input and off-input neurons, respectively. The states of the input neurons were stochastically

set to 1 or 0 with firing probabilities proportional to the intensities of the corresponding pixels,

whereas the states of the output neurons were not set by the external input (see Methods for

details). Instead, the firings of these neurons were determined by Eq. 1 with pmax = 0.95. Initially,

the connection weight Wij was a random matrix (Fig. 5C1), and we found that output neurons did

not exhibit clear selectivity with respect to the external input from the input neurons (Fig. 5D1)

upon averaging the image patches that evoked firings in an output neuron. After learning, however,

the network self-organized a feedforward structure from the on-input and off-input neurons to the

output neurons (Fig. 5B2,C2). The output neuron became highly selective to Gabor function-

like stimuli (Fig. 5D2), exhibiting behavior quite similar to the selectivity of simple cells in the
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V1 cortex (Hubel and Wiesel, 1959). Our optimization algorithm based on RI hence caused the

model network to become organized into a feedforward network containing simple cell-like output

neurons. It has been proven that the infomax accounts for the selectivity of simple cells (Bell

and Sejnowski, 1995, 1997). Bell and Sejnowski (1997) argued that the natural image patches are

composed of independent localized edges such as Gabor functions and that these components can

be recovered by maximizing the mutual information of the input and the output. We thus see that

this result is consistent with the previous studies based on information theory.

In the simulation described above, the external input was fed into a network with high response

reliability (pmax = 0.95). Next, we examined the evolution of the spontaneous activity in a neuronal

network without external input. In this network, the approximate mutual information I(1) of

two successive states was maximized, and the approximate mutual information I(n) of two states

interleaved with n − 1 steps after learning became larger than I(n) before learning (Fig. 6A). We

supposed that this improvement in information retention was a result of the emergence of repeated

activity in the network. To identify repeated activity in the model network, we defined a repeated

pattern as a spatial pattern of neuronal firings that occurs at least twice in the latter half of a

test block (Fig. 6B). Coloring repeated patterns consisting of ≥ 3 firing neurons in raster plots

of the network (Fig. 6D1,D2), we found that the number of repeated patterns increased after

learning. Several patterns were repeated in a sample of 250 steps as seen in Fig. 6D2, where the

repeated patterns are indicated by consistently colored circles and connected by lines. Moreover,

some patterns appeared to constitute repeated sequences. For example, sequence A, composed

of the magenta, orange, and purple patterns, appears three times in Fig. 6D2. To quantify the

increase in repetition, we tabulated the numbers of occurrences of repeated patterns and sequences,

and compared these numbers before and after learning (Fig. 6C). We found that both repeated

patterns and repeated sequences increased significantly after learning. This indicates that the
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present algorithm embeds not only repeated patterns but also repeated sequences of firings into

the network structure as a result of the optimization.

When a pattern in a sequence is activated at one step, it is highly probable that the next

pattern in that sequence will be activated at the next step. This predictability means that the

state of the network at one time step shares much information with the state at the next time step.

In contrast, when the dynamics of a network is highly stochastic and thereby repeated patterns

are rare, we cannot predict which pattern follows a given pattern nor reduce the uncertainty of

the next pattern by using the knowledge of the present pattern. In this case, mutual information

of two successive states is low. Sequences must be repeatedly activated and the network must be

deterministic in order to efficiently retain information in a recurrent network. Hence, we conclude

that the repeated activation of an embedded sequence is an efficient way to maximize information

retention in a recurrent network. These repeated patterns and sequences have been experimentally

observed in vivo (Skaggs and McNaughton, 1996; Sakurai and Takahashi, 2006; Yao et al., 2007)

and in vitro (Cossart et al., 2003; Ikegaya et al., 2004), and their existence is suggested by the

theory of cell assemblies proposed by Hebb (1949) and the theory of synfire chains proposed by

Abeles (1991). We thus see that RI accounts for the appearance of cell assemblies, sequences, and

synfire chains in neuronal networks.

In the simulations shown above, a small fraction of connections grew especially strong in the

network after learning (Fig. 6E2). So we ask the question, is the existence of a small number of

strong connections a sufficient condition for the efficient information transfer? To answer this,

we randomly shuffled the components of the weight matrix of the network after learning shown

in Fig. 6, and we found that shuffled networks exhibited lower mutual information and a smaller

number of occurrences of repeated sequences (Fig. 7, A and B). Thus, the existence of strong

connections does not necessarily imply that the network is efficient in retaining information. RI
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improves information retention in recurrent networks while randomly introducing strong connec-

tions does not.

We next examined the behavior of the same spontaneous model in the case that the maxi-

mal firing probability was small (pmax = 0.5). For small pmax, the number of identically repeated

sequences is small, and the network seems to lose structured activity. However, we found charac-

teristic network activity consisting of firing in bursts (Fig. 8A2), which are defined as consecutive

firing steps that are immediately preceded and followed by “silent” steps, with no firing. We found

that after learning, the distribution P (s) of the burst size s, which is the total number of firings

in a burst, obeys a power-law distribution P (s) ∝ sγ with γ ≈ −1.5, whereas, before learning, we

have P (s) ∝ exp(−αs) (Fig. 8C). This result is consistent with experimental results. Recently,

Beggs and Plenz (2003) recorded the spontaneous activity of an organotypic culture from the cor-

tex using multielectrode arrays. Defining an avalanche similarly to our bursts following a period

of inactivity, they found that the size distribution of avalanches is accurately fit by a power-law

distribution with exponent −1.5. To explain this, they argued that a neuronal network is tuned to

minimize the information loss and that this is realized when one firing induces an average of one

firing at the next step. They showed that this condition yields the universal exponent −3/2, using

the self-organized criticality of the sandpile model (Bak et al., 1987; Harris, 1989). This condition

also holds for the present network, because, after learning, each neuron with pmax = 0.5 had two

strong input connections and two strong output connections on average (Fig. 8B2). The universal

exponent −3/2 was observed in the network for small pmax (Fig. 8C), but not for pmax = 0.95. Ac-

tually, the size distribution of bursts P (s) in the system did not exhibit a power-law distribution,

and displayed several peaks, reflecting the existence of stereotyped sequences (data not shown).

We thus conclude that RI embeds information-efficient structures in which one firing induces on

average one firing at the next step in a network with small pmax.
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To reveal the essential mechanism responsible for the behavior described above, we returned to

the recurrent network with an external input (Fig. 9). It has been observed that the hippocampal

firing sequences in the awake state are repeated during sleep (Skaggs and McNaughton, 1996;

Louie and Wilson, 2001) and that the spontaneous spiking activity in the visual cortex mimics

the movie-evoked response after repeated exposure to a movie (Yao et al., 2007). We investigated

whether or not the firings presented during the learning period are replayed by the present model

after the learning. In the learning blocks, we repeatedly stimulated neurons 1, 3, and 2 in sequence

(Fig. 9A1,B1). In the learning blocks, the state of neuron 1 was set to 1 (fire) at random intervals

ranging from 50 to 99 steps (time step t). At t + 2, the state of neuron 3 was set to 1, and at

t + 6, the state of neuron 2 was set to 1. In the successive test block, in which only neuron 1

was stimulated externally (Fig. 9A2), the firing of neuron 1 was followed by spontaneous firings

of neurons 3 and 2 (Fig. 9B2, arrows). In addition, the spontaneous firing of neuron 1 triggers

the sequence containing the firings of neurons 3 and 2 (Fig. 9B2, double arrows). The form

of the weight matrix after learning reveals that a feedforward structure starting from neuron 1

(1 → 7, 34 → 3, 5 → 49 → 18 → 11, 28 → 2) was embedded in the network (Fig. 9C). This

structure self-organizes in the network because, as we saw above, embedding a sequence of firings

into the network structure is an efficient way to retain information. It is thus seen that RI embeds

externally input temporal firing patterns into the network by producing feedforward structures,

and, as a result, the network can spontaneously reproduce the patterns.

4 Discussion

In this study, we have found that infomax in recurrent networks acts to optimize the network

structure by maximizing the information retained in the recurrent network. Many previous papers
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concerning infomax in feedforward networks (Linsker, 1988; Atick, 1992; Bell and Sejnowski, 1995,

1997; Lewicki, 2002) have suggested that the stimulus selectivity of neurons in CNSs is accounted

for by infomax in feedforward networks. In contrast, although infomax in recurrent networks has

been studied, infomax is applied only to small recurrent networks that can be studied by using a

random search (Ay, 2002). This is because the analysis of recurrent networks is complicated by

history-dependent dynamics due to the recurrent connections. In the present model, approximating

the mutual information of two successive states with second order correlations of neuronal firings,

we succeeded in deriving an algorithm that maximizes information retention in recurrent networks.

The present model reproduced the self-organization of simple cell-like selectivity shown in the

previous models and we successfully extended these previous results to the spontaneous activity

characteristic to recurrent networks. In the context of a simple maze task, for example, these

repeated patterns can be regarded as memory traces representing spatial cues and relationship

between successive items, and they have been supposed to help an animal in solving the maze

task (Dragoi and Buzsáki, 2006). An internal representation of the external input is essential in

adaptation to environments, and the internal representation is constructed by RI in the form of

feedforward structures.

We have found that infomax in recurrent networks reproduces self-organization of cell assemblies

and neuronal avalanches. In contrast, most previous theoretical studies on cell assemblies, synfire

chains, and neuronal avalanches investigated the dynamics of neuronal firings on a network in

which a feedforward structure underlying this characteristic type of activity had been embedded

(Diesmann et al., 1999; Beggs and Plenz, 2003; Teramae and Fukai, 2007). Although these models

successfully reproduced experimental results, they could not explain how the embedded network

structure emerges. A recent theoretical study suggested that neuronal avalanches are accounted

for by a simple model for the growth of dendritic and axonal processes (Abbott and Rohrkemper,
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2007). It seems that this model self-organizes a network structure which maximizes retained

information as in our model.

In our model, the network structure self-organized by the optimization algorithm resulted in

simple cell-like activity, repeated sequences, and neuronal avalanches. Through evolution, animals

have acquired CNSs, which are extremely efficient information processing devices that improve an

animal’s adaptability to various environments. It is thus quite natural that these phenomena can

be regarded as a result of the optimization of information retention. Thus, in this paper and our

model, we have focused on information retention in a recurrent network although CNSs should be

optimized not only for information retention but also for categorization and generalization. On

the other hand, previous studies showed that synaptic plasticity rules experimentally observed and

theoretically proposed optimize the information transmission of individual synapses (Toyoizumi

et al., 2005; Pfister et al., 2006). Thus, neuronal networks with local plasticity rules optimized

to retain information could reproduce the experimental results of repeated activity patterns and

avalanches. However, the learning rule of the present model is not local and requires global

information. We can optimize the activity of, for example, the half of the neurons in the network

if we approximate the mutual information of these N/2 neurons using the N/2×N/2 correlation

matrix and update the connection weights among these neurons, leaving other connection weights

unchanged. Then, we observe that the occurrences of repeated sequences increases after this

learning but not as much as in the simulation shown in Fig. 6 (data not shown). Even though

this learning rule requires the information on only the half of the neurons in the network, this

rule is not local and requires global information on the activity of these N/2 neurons in the

system. To overcome this problem, our next goal is to derive a biologically plausible plasticity

rule in a bottom-up way employing RI, and to compare this rule with experimentally obtained

plasticity rules. We believe that RI will help us to understand the meaning of in vivo and in
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vitro experimental results, particularly to characterize the spontaneous activity of neurons in the

context of information theory.

A Algorithm

Here we describe the algorithm to maximize the mutual information of the present state, X, and

the next state, X̂, of the network.

N neurons receive as input an output x = [xi(t)] at time t and generate an output x̂ = [xi(t+1)]

at time t+ 1. Neuron i takes two states, a firing state, xi = 1, and a non-firing state, xi = 0. The

firing probability of neuron i at time t+ 1 is given by Eq. 1. We assume that Wij can take positive

and negative values, with positive and negative Wij corresponding to excitatory and inhibitory

connections, respectively. The threshold hi(t) evolves according to Eq. 2 and fixes the mean firing

probability of neuron i to p̄i.

To derive the algorithm that maximizes the mutual information of consecutive states, we first

approximate the entropy of the state, H(X), and the entropy of the joint distribution of two

successive states, H(X, X̂). Let P (x) be the probability that the state of the network is x = [xi],

and P (x, x̂) be the probability that the states of the network at consecutive steps are x and

x̂ = [x̂i], respectively. Then, these entropies are defined by

H(X) = −
∑
x

P (x) logP (x),

H(X, X̂) = −
∑
x,x̂

P (x, x̂) logP (x, x̂).

If the distribution of the state x is given by a Gaussian distribution with the correlation matrix

C =


E11 · · · E1N

...
. . .

...

EN1 · · · ENN

 ,
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where Eij = E[(xi − p̄i)(xj − p̄j)], the entropy of the state is

H(X) =
1

2
log |C|+ N

2
(1 + log 2π)

(Cover and Thomas, 2006), and the entropy of the joint distribution of two successive states x and

x̂ is given by

H(X, X̂) =
1

2
log |D|+N(1 + log 2π)

if this joint distribution is Gaussian with correlation matrix

D =



E11 · · · E1N E11̂ · · · E1N̂

...
. . .

...
...

. . .
...

EN1 · · · ENN EN 1̂ · · · ENN̂

E1̂1 · · · E1̂N E1̂1̂ · · · E1̂N̂

...
. . .

...
...

. . .
...

EN̂1 · · · EN̂N EN̂ 1̂ · · · EN̂N̂



,

where Eı̂j = E[(x̂i − p̄i)(xj − p̄j)], Eî = E[(xi − p̄i)(x̂j − p̄j)], and Eı̂̂ = E[(x̂i − p̄i)(x̂j − p̄j)].

Therefore, the mutual information of two successive states x and x̂ is given by

I(X; X̂) = H(X) +H(X̂)−H(X, X̂) = log |C| − 1

2
log |D|. (4)

Here we have used Eı̂̂ = Eij, that is, the fact that correlation matrix of x̂ is identical to the

correlation matrix C of x. We assume that recurrent infomax is realized by maximizing the value

of the function in Eq. 4.

Although the distributions of x and x̂ are not Gaussian because of the discreteness of the

neuronal states, this approximation gives a good estimate of the mutual information. We compared

the mutual information I(X; X̂) of two consecutive steps with this approximation. Fig. 10 shows

that mutual information is fit quite well by the form log |C|− 1
2

log |D|. Because this approximation
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requires only correlation matrices, it enables us to estimate the mutual information I(X; X̂) of N

neurons, whose calculation in its original form requires the joint probability distribution of 22N

realizations of the firing states.

In addition, the quantity in Eq. 4 is a good index of the information retained in a recurrent

network even when it deviates significantly from the value of the mutual information. Maximizing

Eq. 4 results in the decorrelation of the state x due to log |C|, as well as in the increase of

the correlation between the the state x and the next state x̂, owing to −1
2

log |D|. A strong

correlation between the states of the network at two successive steps increases the amount of

information transmitted over time, and strong decorrelation among the neurons at a step increases

the information capacity of the network. Thus, Eq. 4 is an effective measure of the information

retained in the recurrent network. Another advantage of using Eq. 4 as the value function is that

this function can be calculated by using only the second-order correlations. Although higher-order

correlations are useful in estimating the mutual information, calculating higher-order correlations is

time consuming in numerical simulations and complicates the theoretical analysis. In the following

derivation of the algorithm, we use Eq. 4, and thus employ an approximation of the mutual

information in which the contribution of the higher-order correlations is not taken into account.

Similarly, we assume that there exists no correlation higher than second order among the xi

and x̂j. Then, we can assume that the probability of a state x is given by P (x) = z1(x)/Z1, where

Z1 =
∑
x

z1(x) =
∑
x

exp

(∑
ij

Jij(xi − p̄i)(xj − p̄j)

)

is the partition function, in which x runs over all realizations of the firing states. (Each summation

for which no range is expressed is assumed to run from 1 to N .) The variable Jij is dependent on

and determined by the second-order correlation matrix C according to

1

Z1

∑
x

(xi − p̄i)(xj − p̄j) exp

(∑
kl

Jkl(xk − p̄k)(xl − p̄l)

)
=
∑
x

(xi − p̄i)(xj − p̄j)P (x) = Cij, (5)
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and thereby it is dependent on Wkl. We assume that J is a symmetric matrix, that is, Jij = Jji,

without losing generality. Jij does not represent a real connection strength between neurons i and

j, but rather the firing correlation between them. A positive and a negative Jij imply that the

firings of neurons i and j are positively and negatively correlated, respectively. In other words, we

assume that the state x is generated by a Boltzmann machine with connection strength Jij, and

that this Boltzmann machine has been trained to produce the correlation C (Hinton and Sejnowski,

1983). We do not have to solve Eq. 5 to obtain the value of Jij, and as we see in the following,

calculating the derivative of Jij with respect to Wkl suffices to maximize the value of the function

in Eq. 4. Next, we assume that conditional probability, P (x̂|x), is given by z2(x̂|x)/Z2(x), where

Z2(x) =
∑
x̂

z2(x̂|x) =
∑
x̂

exp

(∑
ij

Wij(x̂i − p̄i)(xj − p̄j)−
∑
i

hi(x̂i − p̄i)

)
. (6)

Although we assume this for the general case, it is exactly correct in the case pmax = 1, because in

this case, from Eq. 6, we obtain

P (x̂|x) =
z2(x̂|x)

Z2(x)
=

1

Z2(x)

∏
i

exp

(∑
j

Wij(x̂i − p̄i)(xj − p̄j)− hi(x̂i − p̄i)

)
=

1

Z2(x)

∏
i

z3(x̂i|x),

and we recover the firing probability of neuron i at time t+ 1,

P (x̂i = 1|x) =
z3(x̂i = 1|x)

z3(x̂i = 0|x) + z3(x̂i = 1|x)
= pi(t+ 1),

where we have set the state of neuron i at step t to xi(t) = xi in Eq. 1. Hence, formulating the

partition function Z of the system in the form

Z =
∑
x,x̂

z(x, x̂)

=
∑
x,x̂

z1(x)z2(x̂|x)

=
∑
x,x̂

exp

(∑
ij

Jij(xi − p̄i)(xj − p̄j) +
∑
ij

Wij(x̂i − p̄i)(xj − p̄j)−
∑
i

hi(x̂i − p̄i)

)
,

we can write the joint probability P (x, x̂) = z(x, x̂)/Z.
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Differentiating the correlation Eij with respect to Jkl, we obtain

∂EZ
ij

∂Jkl
=

∂E[(xi − p̄i)(xj − p̄j)]
∂Jkl

=
∂

∂Jkl

∑
x,x̂

(xi − p̄i)(xj − p̄j)P (x, x̂)

=
∂

∂Jkl

 1

Z

∑
x,x̂

(xi − p̄i)(xj − p̄j)z(x, x̂)


=

1

Z

∑
x,x̂

(xi − p̄i)(xj − p̄j)
∂z(x, x̂)

∂Jkl
− 1

Z2

∂Z

∂Jkl

∑
x,x̂

(xi − p̄i)(xj − p̄j)z(x, x̂)

= E[(xi − p̄i)(xj − p̄j)(xk − p̄k)(xl − p̄l)]− E[(xi − p̄i)(xj − p̄j)]E[(xk − p̄k)(xl − p̄l)]

= Eijkl − EijEkl,

where the superscript Z indicates that Eij is regarded as a function of the independent variables

Jkl, Wkl, and hk, although Jij and hi are dependent on Wkl. Preceding in the same way, we find

the following relations:

∂EZ
ı̂̂

∂Wkl

= Eı̂̂k̂l − Eı̂̂Ek̂l,

∂EZ
ı̂̂

∂hk
= −Eı̂̂k̂ + Eı̂̂Ek̂ = −Eı̂̂k̂,

∂EZ
i

∂Jkl
= Eikl − EiEkl = Eikl,

∂EZ
ı̂̂

∂Jkl
= Eı̂̂kl − Eı̂̂Ekl,

∂EZ
ı̂j

∂Wkl

= Eı̂jk̂l − Eı̂jEk̂l,

where Eı̂̂k̂l = E[(x̂i − p̄i)(x̂j − p̄j)(xk − p̄k)(xl − p̄l)], Eı̂̂k̂ = E[(x̂i − p̄i)(x̂j − p̄j)(x̂k − p̄k)], Eikl =

E[(xi − p̄i)(xk − p̄k)(xl − p̄l)], Eı̂̂kl = E[(x̂i − p̄i)(x̂j − p̄j)(xk − p̄k)(xl − p̄l)], and Eı̂jk̂l = E[(x̂i −

p̄i)(xj − p̄j)(x̂k − p̄k)(xl − p̄l)], and we have used Ei = E[xi − p̄i] = 0 and Eı̂ = E[x̂i − p̄i] = 0.

To obtain
∂C

∂Wkl

, we have to calculate

∂Eij
∂Wkl

=
∑
mn

∂EZ
ij

∂Jmn

∂Jmn
∂Wkl

,
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because C and Eij are determined by Jmn according to Eq. 5, and, Jij is dependent on Wkl. States

x and x̂ obey the same distribution, and thereby the dependency of Jij on Wkl is determined by

∆Eı̂̂ = ∆Eij,

∆Ei = 0.

Thus,
∂Jmn
∂Wkl

is given by the solution of the following:

∆Eı̂̂ = ∆Eij =⇒
∑
kl

∂EZ
ı̂̂

∂Jkl
∆Jkl +

∑
kl

∂EZ
ı̂̂

∂Wkl

∆Wkl +
∑
k

∂EZ
ı̂̂

∂hk
∆hk =

∑
kl

∂EZ
ij

∂Jkl
∆Jkl,

∆Ei = 0 =⇒
∑
kl

∂EZ
i

∂Jkl
∆Jkl = 0.

Rearranging terms, we obtain

∑
kl

(Eı̂̂kl − Eı̂̂Ekl − Eijkl + EijEkl)∆Jkl −
∑
k

Eı̂̂k̂∆hk = −
∑
kl

(Eı̂̂k̂l − Eı̂̂Ek̂l)∆Wkl, (7)

∑
kl

Eikl∆Jkl = 0. (8)

Because we have assumed that there exist no higher-order correlations, we substitute the higher-
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order correlations in these equations with the second-order correlations as follows:

Eijl ≈


p̄i(1− p̄i)(1− 2p̄i) i = j = k

0 otherwise

,

Eı̂̂l̂ ≈


p̄i(1− p̄i)(1− 2p̄i) ı̂ = ̂ = k̂

0 otherwise

,

Eijkl − EijEkl ≈



(1− 2p̄i)(1− 2p̄k)Eik i = j, k = l

(1− 2p̄i)(1− 2p̄j)Eij + p̄ip̄j(1− p̄i)(1− p̄j)− E2
ij i = k, j = l or i = l, j = k

0 otherwise

,

Eı̂jk̂l − Eı̂jEk̂l ≈


(1− 2p̄i)(1− 2p̄j)Eı̂j + p̄ip̄j(1− p̄i)(1− p̄j)− E2

ı̂j ı̂ = k̂, j = l

0 otherwise

,

Eı̂̂kl − Eı̂̂Ekl ≈


(1− 2p̄i)(1− 2p̄k)Eı̂k + p̄ip̄k(1− p̄i)(1− p̄k)− E2

ı̂k ı̂ = ̂, k = l

0 otherwise

,

Eı̂̂k̂l − Eı̂̂Ek̂l ≈


(1− 2p̄i)(1− 2p̄l)Eı̂l ı̂ = ̂ = k̂

Eı̂k̂Êl + Eı̂lÊk̂ otherwise

.

Here we have assumed that terms containing correlations among three or more variables are small

and can be set to zero, except in the last approximation. In the last approximation, we have

assumed Eı̂̂k̂l = Eı̂̂Ek̂l + Eı̂k̂Êl + Eı̂lÊk̂, which holds when the joint distribution of x and x̂ is

Gaussian. Thus, Eq. 8 is approximated by

p̄i(1− p̄i)(1− 2p̄i)∆Jii = 0,
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and therefore ∆Jii = 0 for all i. Hence, Eq. 7 can be approximated by

−(1− δij)((1− 2p̄i)(1− 2p̄j)Eij + p̄ip̄j(1− p̄i)(1− p̄j)− E2
ij)(∆Jij + ∆Jji)

−δij p̄i(1− p̄i)(1− 2p̄i)∆hi

= −δij
∑
kl

(δik(1− 2p̄i)(1− 2p̄l)Eı̂l + 2(1− δik)Eı̂k̂Êl)∆Wkl − (1− δij)
∑
kl

(Eı̂k̂Êl + Eı̂lÊk̂)∆Wkl,

where δij is the Kronecker delta. For i 6= j, we have

−((1− 2p̄i)(1− 2p̄j)Eij + p̄ip̄j(1− p̄i)(1− p̄j)− E2
ij)(∆Jij + ∆Jji)

= −
∑
kl

(Eı̂k̂Êl + Eı̂lÊk̂)∆Wkl.

Thus, ∆Jij is given by

∆Jij = ∆Jji = (1− δij)
1

2

∑
kl(Eı̂k̂Êl + Eı̂lÊk̂)∆Wkl

(1− 2p̄i)(1− 2p̄j)Eij + p̄ip̄j(1− p̄i)(1− p̄j)− E2
ij

.

Hence, we have

∂Eij
∂Wkl

=
∑
mn

∂EZ
ij

∂Jmn

∂Jmn
∂Wkl

≈ ((1− 2p̄i)(1− 2p̄j)Eij + p̄ip̄j(1− p̄i)(1− p̄j)− E2
ij)

(
∂Jij
∂Wkl

+
∂Jji
∂Wkl

)
= (1− δij)

((1− 2p̄i)(1− 2p̄j)Eij + p̄ip̄j(1− p̄i)(1− p̄j)− E2
ij)(Eı̂k̂Êl + Eı̂lÊk̂)

(1− 2p̄i)(1− 2p̄j)Eij + p̄ip̄j(1− p̄i)(1− p̄j)− E2
ij

= (1− δij)(Eı̂k̂Êl + Eı̂lÊk̂).

Assuming that only Wij affects the correlation Eı̂j and that Eı̂j is independent of Jkl and hk, we

obtain

∂Eı̂j
∂Wkl

≈
∂EZ

ı̂j

∂Wkl

= Eı̂jk̂l − Eı̂jEk̂l

≈ δikδjl((1− 2p̄i)(1− 2p̄j)Eı̂j + p̄ip̄j(1− p̄i)(1− p̄j)− E2
ı̂j).
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Therefore, we find

∂

∂Wkl

log |C| =
∑
ij

∂Cij
∂Wkl

(C−1)ji

=
∑
ij

∂Eij
∂Wkl

(C−1)ji

≈
∑
ij

(1− δij)(Eı̂k̂Êl + Eı̂lÊk̂)(C
−1)ji

= V C
kl

and

∂

∂Wkl

log |D| =
∑

1≤i≤2N 1≤j≤2N

∂Dij

∂Wkl

D−1
ji

=
∑
ij

∂Eij
∂Wkl

(D−1)ji +
∑
ij

∂Eij
∂Wkl

(D−1)j+N i+N

+
∑
ij

∂Eî
∂Wkl

(D−1)j+N i +
∑
ij

∂Eı̂j
∂Wkl

(D−1)j i+N

≈
∑
ij

(1− δij)(Eı̂k̂Êl + Eı̂lÊk̂)(D
−1)ji +

∑
ij

(1− δij)(Eı̂k̂Êl + Eı̂lÊk̂)(D
−1)j+N i+N

+
∑
ij

δjkδil((1− 2p̄i)(1− 2p̄j)Êi + p̄ip̄j(1− p̄i)(1− p̄j)− E2
̂i)(D

−1)j+N i

+
∑
ij

δikδjl((1− 2p̄i)(1− 2p̄j)Eı̂j + p̄ip̄j(1− p̄i)(1− p̄j)− E2
ı̂j)(D

−1)j i+N

=
∑
ij

(1− δij)(Eı̂k̂Êl + Eı̂lÊk̂)((D
−1)ji + (D−1)j+N i+N)

+((1− 2p̄k)(1− 2p̄l)Ek̂l + p̄kp̄l(1− p̄k)(1− p̄l)− E2
k̂l

)((D−1)l k+N + (D−1)k+N l)

= V D
kl .

Combining the above forms of
∂

∂Wkl

log |C| and
∂

∂Wkl

log |D|, we find that the steepest gradient
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Vkl of the approximate mutual information is given by

Vkl =
∂

∂Wkl

I(X; X̂)

≈ ∂

∂Wkl

(
log |C| − 1

2
log |D|

)
≈ V C

kl −
1

2
V D
kl

=
1

2

∑
ij

(1− δij)(Eı̂k̂Êl + Eı̂lÊk̂)(2(C−1)ji − (D−1)ji − (D−1)j+N i+N)

−1

2
((1− 2p̄k)(1− 2p̄l)Ek̂l + p̄kp̄l(1− p̄k)(1− p̄l)− E2

k̂l
)((D−1)l k+N + (D−1)k+N l).

To test the approximation of the above gradient, we compared the difference between ∆ log |C| =

log |C ′|− log |C| and
∑

ij V
C
ij ∆Wij, where C and C ′ are the correlation matrices of x in the systems

with the connection matrices Wij and Wij + ∆Wij, respectively. Fig. 11A shows that this approx-

imation is quite good. The approximations ∆ log |D| = log |D′| − log |D| ≈
∑

ij V
D
ij ∆Wij and

∆I(X; X̂) = I ′(X; X̂)− I(X; X̂) ≈
∑

ij Vij∆Wij also give good estimates (Fig. 11B,C). Although

we set pmax = 1 for the system depicted in Fig. 11,
∑

ij Vij∆Wij is a good index for the difference

of the mutual information ∆I(X; X̂), in the case pmax < 1.

B Method for counting the repeated patterns and sequences

In Fig. 6, we present the number of repeated patterns and sequences before and after learning.

Defining repeated patterns as exact patterns that occur multiple times, we excluded incompletely

matched patterns from the definition of repeated patterns. This is because we wanted to simplify

the definition in order to make the result clear. Of course, we could define it such that patterns

with small differences can be regarded as a single repeated pattern. For example, if two patterns

with one mismatch or less, such as patterns a and b in Fig. 12A, are regarded as the same pattern,

patterns b and c would also be regarded as the same pattern. Patterns a and c, however, cannot be
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regarded as the same pattern, because the states of two of their neurons differ. Thus, in general,

even if some patterns, a and b, are considered to be the same pattern and some patterns, b and c,

are considered to be the same, patterns a and c may not be the same, according to this definition.

Thus, classifying two slightly different patterns into one repeated pattern makes the definition of

the repeated patterns less meaningful.

We defined a repeated sequence as an exact series of patterns that occurs more than once in a

block. A repeated sequence is thus composed of repeated patterns. Moreover, a repeated sequence

is composed of shorter repeated sequences. For example, each repeated sequence of length 4

contains 3 repeated sequences of length 2 (Fig. 12B). In general, a repeated sequence of length l1

contains l1 − l2 + 1 repeated sequences of length l2 < l1. At first glance, it might seem that this

way of counting repeated sequences overestimates the number of occurrences of repeated sequences

and should be replaced by some more sophisticated method, such as a definition that does not

count the short sequences contained in a longer repeated sequence as a repeated sequence. Such

a method of counting, however, underestimates the number of repeated sequences. If a sequence

B of length 2 occurs three times, twice in a repeated sequence D of length 4 (B2 in D1 and B3

in D2 of Fig. 12C) and once outside of longer sequences (B1 in Fig. 12C), this modified way of

counting fails to count the sequence B1 as an occurrence of the repeated sequence of length 2,

even though this sequence is indeed repeated. To avoid this kind of failure, we counted sequences

as repeated sequences even when they were contained in longer repeated sequences. Thus, each

of the sequences A, B, C, and D occurs twice in Fig 12B, and the sequences B and D occur three

times and twice, respectively, in Fig 12C.
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Figure 1: Feedforward network and recurrent network. (A) The feedforward network considered

by Linsker (1988) and Bell and Sejnowski (1995). An input signal at time step t is converted

to an output signal at time step t by the output neurons without memory. Infomax maximizes

the mutual information of the input and output. Feedback from output to input (dashed line)

is not considered in Linsker (1988) and Bell and Sejnowski (1995). (B,C) The recurrent network

investigated here. Recurrent connections convey the output of the last time step, and the output

of the neurons at time t is used as the input to the neurons at time t + 1. Their firing states

at time step t − 1 are synchronously updated to time step t. This network is equivalent to the

network depicted in A with feedback if the output at t in A is regarded as the state at t and used

as the input at t+ 1. This network hence has memory of the previous state, and the information

is retained in the network. Although ‘Input’ and ‘Output’ are not included in B and C, replacing

the output of some neurons with input signal provides this network with an external input, and

the output of the neurons can be regarded as the output of the network.
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Figure 2: Basic ideas of recurrent infomax. (A1,A2) A less-optimized and an optimized feedforward

network. Mutual information is calculated using the probability distribution of input and output.

Optimizing the connection weight maximizes the information transmitted from the input to the

output units. In other words, infomax minimizes the information loss. Bell and Sejnowski (1997)

reported that infomax in a feedforward network whose input consists of information taken from

a photograph of a natural scene produces output units with simple cell-like selectivity. (B1,B2)

Recurrent infomax. Maximizing the mutual information of the two successive steps in the network

improves information retention and reduces the information loss over time.
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Figure 3: Simulation process. (A) In each step, firing states of neurons are synchronously updated

using Eq. 1. A block consists of 20,000-100,000 steps. (B) Wij was updated using Eq. 3 at the end

of every two blocks.
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Figure 4: Mutual information of two successive states increases through learning process. In

the learning process consisting of 500 blocks, we observed increasing mutual information of two

successive states in the system whose behavior is shown in Fig. 5.
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Figure 5: Formation of the feedforward structure through an algorithm based on RI in the model

network with external input. (A) The original photograph (1024×1024) of a pine tree was converted

to a gray-scaled, high-pass filtered image. Image patches (12 × 12) randomly selected from the

high-pass filtered image were used as the external inputs to the network at each time step. (B1,C1)

Initially, 432 neurons were connected according to a random weight matrix. Of these neurons 144

were on-input, 144 were off-input, and 144 were output neurons. Each of the 144 pixels in an image

patch was linked to a pair of an on- and an off-input neuron in such a manner that the on-input

and off-input neurons were set to 1 (fire) only when the corresponding pixels had a positive and

negative sign, respectively. Output neurons fired spontaneously according to Eq. 1. The weight

matrix before learning is shown in C1. Initially, the connection weight Wij was a random matrix.

(B2,C2) After learning, feedforward structure from input to output neurons appeared in the model

network. (D1,2) Averaging the image patches that evoked firings of the output neurons revealed

that the output neurons, which did not exhibit clear selectivity before learning, responded to the

Gabor-like stimulus after learning. Here the following parameter values were used: N = 432,

p̄input ≈ 0.15, p̄output = 0.002, pmax = 0.95, ε = 0.01, η = 20, and wlimit = 100. Each of the 500

learning blocks consisted of 60,000 steps.
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Figure 6:
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Repeated spatial patterns and spatiotemporal sequences occurred frequently in the network

with pmax = 0.95 after learning. (A) Mutual information of two states interleaved with n−1 steps,

I(n), in 5th, 1200th, and 2500th blocks. I(n) is a monotonically decreasing function because two

states separated by n steps share less information than two states separated by n − 1 steps. I(n)

takes a larger value in the optimized network after 2500 learning blocks than I(1) before learning.

In the 1200th block, I(n) has become larger than at the 5th block but have not been optimized yet.

Because I(1) is an approximation of mutual information of two successive states, I(1) takes quite

a large value after learning. Although I(1) largely deviates from the mutual information, it is a

good index of the information retained in a recurrent network (see Appendix A). (B) We define

a repeated pattern as a spatial firing pattern that is identically repeated at different time steps.

The size of a pattern is defined as the number of neurons firing in the pattern. A sequence that

contains a particular set of patterns appearing repeatedly in the same temporal order is called a

“repeated sequence.” The size of a repeated sequence is defined as the sum of the sizes of the

patterns contained in it. (C) The numbers of occurrences of the patterns and sequences repeated

in the latter half of a test block (50,000 steps) were compared before and after learning. In this

histogram, only the sequences with sizes larger than 5l, where l is the length of the sequence,

were counted. (D1,2) When the repeated patterns in the latter 50,000 steps were colored, it was

found that no pattern occurred more than once in this short raster plot before learning (D1).

By contrast, several patterns appeared multiple times in the raster plot after learning (D2). In

addition, repeated sequences were found only in the raster plot after learning (red stars and blue

diamonds). (E1,2) The initial Wij with random weights (E1) evolved into a matrix with relatively

few strong weights (E2) after learning. Here the following parameter values were used: N = 50,

p̄ = 0.05, pmax = 0.95, ε = 0.01, η = 0.2, and wlimit = 100. Each of the 2500 learning blocks

consisted of 100,000 steps.
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Figure 7: The network in Fig. 6 (Optimized) and shuffled networks. (A) Approximate mutual

informations of two successive states of all 100 shuffled networks are smaller than that of the

original network after learning in Fig. 6 (I(1) = 39.7). (B) The numbers of occurrences of repeated

sequences with length 3 of all 100 shuffled networks are smaller than that of the original network

after learning in Fig. 6 (1606 occurrences).

38



Figure 8: Spontaneous activity of the recurrent network with pmax = 0.5 and pmax = 0.25. (A1,2)

Individual bursts in the spontaneous activity before (A1) and after learning (A2) for the network

with pmax = 0.5 are indicated by different colors. The bursts before learning were short and

frequently interrupted by steps without firing, whereas the bursts after learning had much longer

durations. (B1,2) The initial Wij with random weights evolved into a matrix with relatively few

strong weights. Most rows and columns contained two strong excitatory connections (black dots);

that is, most neurons had two strong inputs and two strong outputs. (C) Frequency distribution

P (s) of the burst size plotted as a function of the size, s. The black line corresponds to a slope of

−1.5. Here the following parameter values were used: N = 50, p̄i = 0.01, ε = 0.01, η = 0.2, and

wlimit = 100. Each of the 15,000 learning blocks consisted of 20,000 steps.
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Figure 9: A feedforward structure was embedded in the model network by the temporally-

structured stimulation. (A1,2) In the learning blocks, the state of neuron 1 was set to 1 (fire)

at random intervals ranging from 50 to 99 steps. The first time step, t, is indicated by the arrow

in A1. At t + 2, the state of neuron 3 was set to 1, and at t + 6, the state of neuron 2 was set to

1. In the test block after learning, only neuron 1 was set to 1 at random intervals ranging from 50

to 99 steps (A2). External stimulations are indicated by red circles. (B1, 2) The network activity

in an early learning block (B1) and the test block (B2). The steps at which neuron 1 was set to

1 are indicated by arrows, and externally evoked firings of neurons 1, 2, and 3 are indicated by

red circles. Although the states of neurons 2 and 3 were not set from the outside during the test

block, neurons 2 and 3 fired spontaneously six and two steps, respectively, after neuron 1 fired

(as indicated by orange circles). The sequence of firings embedded by learning was replayed after

the spontaneous firing of neuron 1 (double arrows). (C) The weight matrix of the network after

learning (top) and its schematic representation (bottom) indicate a feedforward structure which

underlies the firing sequence starting from neuron 1 and containing neurons 3 and 2. Here the

following parameter values were used: N = 50, p̄i = 0.02, pmax = 0.98, ε = 0.01, η = 1, and

wlimit = 1000. Each of the 4250 learning blocks consisted of 60,000 steps, and we performed one

test block after 4250 learning blocks.
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Figure 10: Comparison of I(X; X̂) and its approximation log |C| − log |D|/2. The mutual infor-

mation, I(X; X̂), is obtained through the direct measurement of the joint distribution P (x, x̂) in

a block with 2 × 107 steps. Here the following parameter values were used: N = 4, pmax = 1,

p̄i = 0.4, and ε = 1.0× 10−5. The initial values of Wij were drawn from a uniform distribution of

the interval [−0.5, 0.5]. We converted the mutual information I(X; X̂) and its approximation to

bits by multiplying by the factor 1/ log 2.
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Figure 11: Comparison of ∆ log |C| (A), ∆ log |D| (B), and ∆I(X; X̂) (C) and their approxima-

tions. The initial values of Wij were drawn from uniform distribution on [−0.5, 0.5], and the

differences, ∆Wij, were drawn from a uniform distribution on [−0.005, 0.005]. Wij is changed to

Wij + ∆Wij at the beginning of the block 2. ∆ log |C|, ∆ log |D|, and ∆I(X; X̂) are the differences

between the values measured in blocks 1 and 2. Each block consists of 2 × 107 steps. The same

random number series were used in these blocks. Here the following parameter values were used:

N = 4, pmax = 1, p̄i = 0.4, and ε = 1.0× 10−5.
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Figure 12: Counting the number of occurrences of the repeated sequences. (A) Only identical

repeats are counted as a repeat. Although the pattern b is very similar to pattern a and pattern c

(one mismatch), they are not counted as repeated patterns. (B) Long repeated sequences contain

shorter repeated sequences. The repeated sequence D of length 4 contains the repeated sequences

A, B, and C of length 2. Two repeated sequences of length 3 are also contained in the repeated

sequence D. (C) If the sequences contained in a longer repeated sequence are not counted as

repeated sequences, the number of occurrences of the repeated sequences are underestimated.
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Figure 1: Feedforward network and recurrent network. (A) The feedforward network considered

by Linsker (1988) and Bell and Sejnowski (1995). An input signal at time step t is converted

to an output signal at time step t by the output neurons without memory. Infomax maximizes

the mutual information of the input and output. Feedback from output to input (dashed line)

is not considered in Linsker (1988) and Bell and Sejnowski (1995). (B,C) The recurrent network

investigated here. Recurrent connections convey the output of the last time step, and the output

of the neurons at time t is used as the input to the neurons at time t + 1. Their firing states

at time step t − 1 are synchronously updated to time step t. This network is equivalent to the

network depicted in A with feedback if the output at t in A is regarded as the state at t and used

as the input at t + 1. This network hence has memory of the previous state, and the information

is retained in the network. Although ‘Input’ and ‘Output’ are not included in B and C, replacing

the output of some neurons with input signal provides this network with an external input, and

the output of the neurons can be regarded as the output of the network.
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Figure 2: Basic ideas of recurrent infomax. (A1,A2) A less-optimized and an optimized feedforward

network. Mutual information is calculated using the probability distribution of input and output.

Optimizing the connection weight maximizes the information transmitted from the input to the

output units. In other words, infomax minimizes the information loss. Bell and Sejnowski (1997)

reported that infomax in a feedforward network whose input consists of information taken from

a photograph of a natural scene produces output units with simple cell-like selectivity. (B1,B2)

Recurrent infomax. Maximizing the mutual information of the two successive steps in the network

improves information retention and reduces the information loss over time.

32



A

...

{20,000∼100,000 steps = 1 block

...
Eq. 1 Eq. 1 Eq. 1 Eq. 1 Eq. 1 Eq. 1Eq. 1 Eq. 1

...
Eq. 1

...
Eq. 1

Block b Block b+1Block b−1

Block b

Simulation = 500∼15,000 blocks

Update W (Eq. 3)ij Block b+1 Update W (Eq. 3)ij ...
{B

... Update W (Eq. 3)ij

Figure 3: Simulation process. (A) In each step, firing states of neurons are synchronously updated

using Eq. 1. A block consists of 20,000-100,000 steps. (B) Wij was updated using Eq. 3 at the end

of every two blocks.
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Figure 4: Mutual information of two successive states increases through learning process. In

the learning process consisting of 500 blocks, we observed increasing mutual information of two

successive states in the system whose behavior is shown in Fig. 5.
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Figure 5: Formation of the feedforward structure through an algorithm based on RI in the model

network with external input. (A) The original photograph (1024×1024) of a pine tree was converted

to a gray-scaled, high-pass filtered image. Image patches (12 × 12) randomly selected from the

high-pass filtered image were used as the external inputs to the network at each time step. (B1,C1)

Initially, 432 neurons were connected according to a random weight matrix. Of these neurons 144

were on-input, 144 were off-input, and 144 were output neurons. Each of the 144 pixels in an image

patch was linked to a pair of an on- and an off-input neuron in such a manner that the on-input

and off-input neurons were set to 1 (fire) only when the corresponding pixels had a positive and

negative sign, respectively. Output neurons fired spontaneously according to Eq. 1. The weight

matrix before learning is shown in C1. Initially, the connection weight Wij was a random matrix.

(B2,C2) After learning, feedforward structure from input to output neurons appeared in the model

network. (D1,2) Averaging the image patches that evoked firings of the output neurons revealed

that the output neurons, which did not exhibit clear selectivity before learning, responded to the

Gabor-like stimulus after learning. Here the following parameter values were used: N = 432,

p̄input ≈ 0.15, p̄output = 0.002, pmax = 0.95, ε = 0.01, η = 20, and wlimit = 100. Each of the 500

learning blocks consisted of 60,000 steps.
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Repeated spatial patterns and spatiotemporal sequences occurred frequently in the network

with pmax = 0.95 after learning. (A) Mutual information of two states interleaved with n−1 steps,

I(n), in 5th, 1200th, and 2500th blocks. I(n) is a monotonically decreasing function because two

states separated by n steps share less information than two states separated by n − 1 steps. I(n)

takes a larger value in the optimized network after 2500 learning blocks than I(1) before learning.

In the 1200th block, I(n) has become larger than at the 5th block but have not been optimized yet.

Because I(1) is an approximation of mutual information of two successive states, I(1) takes quite

a large value after learning. Although I(1) largely deviates from the mutual information, it is a

good index of the information retained in a recurrent network (see Appendix A). (B) We define

a repeated pattern as a spatial firing pattern that is identically repeated at different time steps.

The size of a pattern is defined as the number of neurons firing in the pattern. A sequence that

contains a particular set of patterns appearing repeatedly in the same temporal order is called a

“repeated sequence.” The size of a repeated sequence is defined as the sum of the sizes of the

patterns contained in it. (C) The numbers of occurrences of the patterns and sequences repeated

in the latter half of a test block (50,000 steps) were compared before and after learning. In this

histogram, only the sequences with sizes larger than 5l, where l is the length of the sequence,

were counted. (D1,2) When the repeated patterns in the latter 50,000 steps were colored, it was

found that no pattern occurred more than once in this short raster plot before learning (D1).

By contrast, several patterns appeared multiple times in the raster plot after learning (D2). In

addition, repeated sequences were found only in the raster plot after learning (red stars and blue

diamonds). (E1,2) The initial Wij with random weights (E1) evolved into a matrix with relatively

few strong weights (E2) after learning. Here the following parameter values were used: N = 50,

p̄ = 0.05, pmax = 0.95, ε = 0.01, η = 0.2, and wlimit = 100. Each of the 2500 learning blocks

consisted of 100,000 steps.
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Figure 7: The network in Fig. 6 (Optimized) and shuffled networks. (A) Approximate mutual

informations of two successive states of all 100 shuffled networks are smaller than that of the

original network after learning in Fig. 6 (I(1) = 39.7). (B) The numbers of occurrences of repeated

sequences with length 3 of all 100 shuffled networks are smaller than that of the original network

after learning in Fig. 6 (1606 occurrences).
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Figure 8: Spontaneous activity of the recurrent network with pmax = 0.5 and pmax = 0.25. (A1,2)

Individual bursts in the spontaneous activity before (A1) and after learning (A2) for the network

with pmax = 0.5 are indicated by different colors. The bursts before learning were short and

frequently interrupted by steps without firing, whereas the bursts after learning had much longer

durations. (B1,2) The initial Wij with random weights evolved into a matrix with relatively few

strong weights. Most rows and columns contained two strong excitatory connections (black dots);

that is, most neurons had two strong inputs and two strong outputs. (C) Frequency distribution

P (s) of the burst size plotted as a function of the size, s. The black line corresponds to a slope of

−1.5. Here the following parameter values were used: N = 50, p̄i = 0.01, ε = 0.01, η = 0.2, and

wlimit = 100. Each of the 15,000 learning blocks consisted of 20,000 steps.
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Figure 9: A feedforward structure was embedded in the model network by the temporally-

structured stimulation. (A1,2) In the learning blocks, the state of neuron 1 was set to 1 (fire)

at random intervals ranging from 50 to 99 steps. The first time step, t, is indicated by the arrow

in A1. At t + 2, the state of neuron 3 was set to 1, and at t + 6, the state of neuron 2 was set to

1. In the test block after learning, only neuron 1 was set to 1 at random intervals ranging from 50

to 99 steps (A2). External stimulations are indicated by red circles. (B1, 2) The network activity

in an early learning block (B1) and the test block (B2). The steps at which neuron 1 was set to

1 are indicated by arrows, and externally evoked firings of neurons 1, 2, and 3 are indicated by

red circles. Although the states of neurons 2 and 3 were not set from the outside during the test

block, neurons 2 and 3 fired spontaneously six and two steps, respectively, after neuron 1 fired

(as indicated by orange circles). The sequence of firings embedded by learning was replayed after

the spontaneous firing of neuron 1 (double arrows). (C) The weight matrix of the network after

learning (top) and its schematic representation (bottom) indicate a feedforward structure which

underlies the firing sequence starting from neuron 1 and containing neurons 3 and 2. Here the

following parameter values were used: N = 50, p̄i = 0.02, pmax = 0.98, ε = 0.01, η = 1, and

wlimit = 1000. Each of the 4250 learning blocks consisted of 60,000 steps, and we performed one

test block after 4250 learning blocks.
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Figure 10: Comparison of I(X; ̂X) and its approximation log |C| − log |D|/2. The mutual infor-

mation, I(X; ̂X), is obtained through the direct measurement of the joint distribution P (x, x̂) in

a block with 2 × 107 steps. Here the following parameter values were used: N = 4, pmax = 1,

p̄i = 0.4, and ε = 1.0 × 10−5. The initial values of Wij were drawn from a uniform distribution of

the interval [−0.5, 0.5]. We converted the mutual information I(X; ̂X) and its approximation to

bits by multiplying by the factor 1/ log 2.
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Figure 11: Comparison of Δ log |C| (A), Δ log |D| (B), and ΔI(X; ̂X) (C) and their approxima-

tions. The initial values of Wij were drawn from uniform distribution on [−0.5, 0.5], and the

differences, ΔWij, were drawn from a uniform distribution on [−0.005, 0.005]. Wij is changed to

Wij +ΔWij at the beginning of the block 2. Δ log |C|, Δ log |D|, and ΔI(X; ̂X) are the differences

between the values measured in blocks 1 and 2. Each block consists of 2 × 107 steps. The same

random number series were used in these blocks. Here the following parameter values were used:

N = 4, pmax = 1, p̄i = 0.4, and ε = 1.0 × 10−5.
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Figure 12: Counting the number of occurrences of the repeated sequences. (A) Only identical

repeats are counted as a repeat. Although the pattern b is very similar to pattern a and pattern c

(one mismatch), they are not counted as repeated patterns. (B) Long repeated sequences contain

shorter repeated sequences. The repeated sequence D of length 4 contains the repeated sequences

A, B, and C of length 2. Two repeated sequences of length 3 are also contained in the repeated

sequence D. (C) If the sequences contained in a longer repeated sequence are not counted as

repeated sequences, the number of occurrences of the repeated sequences are underestimated.
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