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Abstract

We present a weighted scale-free network model, in which the power-law exponents
can be controlled by the model parameters. The network is generated through the
weight-driven preferential attachment of new nodes to existing nodes and the growth
of the weights of existing links. The simplicity of the model enables us to derive
analytically the various statistical properties, such as the distribution of degree,
strength, and weight, the degree-strength and degree-weight relationship, and the
dependencies of these power-law exponents on the model parameters. Finally, we
demonstrate that networks of words, coauthorship of researchers, and collaboration
of actor/actresses are quantitatively well described by this model.
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1 Introduction

Understanding the evolution and dynamics on networks has become essen-
tial to comprehend physical, biological, and sociological phenomena in our
world. We ourselves live in and interact with society, which consists of peo-
ple connected through relationships, that is, links, such as friendship, kinship,
economic interaction, and other forms of interpersonal ties. Our society thus
constitutes a network in which individuals and the connections among them
can be regarded as nodes and links, respectively. Many types of real-world
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networks including the coauthorship of researchers [1], collaboration of ac-
tors/actresses [2], biochemical reaction in the cell [3], WWW [4], Internet [5],
and words in a text [6] have been studied in physical literatures. These net-
works are known to belong to a class of scale-free networks. ‘Scale-free’ means
that the distribution of the degree, i.e. the link number of the nodes, in these
networks obeys a power-law and there is no characteristic degree number.

A number of papers have been published on models generating scale-free net-
works. The best known is the Barabási-Albert model [7], which is characterized
by growth and preferential attachment. The basic idea is that the nodes with
large degrees gain new links faster than the nodes with small degrees. The
growth and the preferential attachment are such central ideas in the scale-
free network models [8] that a large number of models of scale-free networks
are based on these two mechanisms [9,10,11]. Moreover, these mechanisms
have been proven to be capable of making power-law distributions since the
mid-1950’s [12,13]. Thus, growth and preferential attachment give a simple
and powerful explanation for how these scale-free networks in our society are
formed, although some other models generate the scale-free network without
growth using the degree-dependent rewiring of the links [14] and the fixed
fitness of the nodes [15,16].

A large body of work exists on the dynamics of scale-free networks [17], such as
the spread of infectious diseases [18], opinion formation [19], strategic games
[20], packet transfer [21], and synchronization of oscillators [22]. The dynamics
on the network are, however, determined not only by the topological struc-
ture of the network but also by the connection strengths between the nodes.
Taking the spread of the disease as an example, it is evident that the strength
of the link between nodes plays a very important role in determining whether
or not the disease is transmitted from one person to another. If the weight of
a link is small, it is unlikely that the disease transmits itself through the link,
whereas it is highly probable that the disease transmits itself if the weight is
large. Hence, much effort has been focused on the examination of the statisti-
cal properties of the weighted scale-free networks [23,24] and on the modeling
of the process generating them [25,26,27,28]. The weights in earlier weighted
scale-free network models are determined by the degrees of the nodes [25] or
their fitnesses [26,28]. In the Barrat-Barthélemy-Vespignani model [27], the
weights of the links grow only when a node at the end of this link gains a
new link. Although these models are interesting from the theoretical point of
view, the weights in the real-world networks often grow without making new
edges and are less dependent on the degrees. Taking account of these points,
we will attempt to construct a simple model with the following properties
in this study: (i) growth through weight-driven preferential attachment; (ii)
link weights can grow larger spontaneously, that is, without making new links;
(iii) growth determined by the strength of the node, not by the fitnesses of the
nodes; and (iv) power-law exponents of the networks can be easily changed in
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controlling the model parameters. Finally, we found that our model can repro-
duce the degree, strength, and weight distributions of the real-world scale-free
networks.

The model of the present paper is an extension of the earlier model [29].

2 Model

Before introducing our model, we define some measures to characterize weighted
networks. First, the connectivity of a network can be expressed by an ad-
jacency matrix aij, whose elements take the value 1 if the node i is con-
nected to the node j and 0 otherwise. The degree of node i is then defined by
ki =

∑N
j=1 aij, where N is the total number of nodes. In addition, the weight

of the link between nodes i and j is denoted by wij. Let us define the strength
of node i as si =

∑N
j=1 aijwij, which is the sum of the weights of all the links

connecting to node i. In this model, we assume that the links are undirected,
so that the adjacency matrix aij and the weight matrix wij are symmetric.

We schematically present a set of rules for generating the network as follows
(Fig. 1). The network initially starts with a single node. Rule 1: at each time
step, a new node is added to the network and connections are made to m
existing nodes, where the probability that the node i is chosen is proportional
to si +σ, i.e. (si +σ)

/

∑N
j=1 (sj + σ) (strength-driven preferential attachment),

where σ is a constant parameter. The weight of this new link is then set to
unity. Rule 2: at each time step, ctµ pairs of the existing nodes are selected

with a probability proportional to si+σ, i.e. (si+σ)(sj+σ)
/

(

∑N
k=1 sk + σ

)2
. If

these two nodes are not connected, they are connected by a link with a weight
equal to unity (Rule 2a). If they are already connected, the weight of the
corresponding link between them is incremented by one (Rule 2b). We assume
σ > −m to enable the new node to gain links in further steps because the
strength of the new node is m. This rule can be regarded as a generalization
of the rule in the word web growth [30]. Note that starting from a network
with m nodes at time t = m, the total number of nodes is equal to the time t
and each node can be labeled by the time u when the node is added.

As we will see in the following, the distribution of the strength, degree, and
weight and the relationship among them are determined by the parameters
c, m, µ, and σ. Although the power-law exponents of these distributions are
determined by the parameters µ, m, and σ as we show in the following, we
focus on c as an example, because c changes the structure of the network
drastically. Fig. 2 shows how drastically c changes the structure of the whole
network generated by the present model. The networks shown in Fig. 2 are
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generated by the model with parameters c = 0.5, m = 1, µ = 1, and σ = 0
(left) and c = 0.0001, m = 1, µ = 1, and σ = 0 (right). Although these
networks share all parameters other than c and have the same number of
nodes (50), they are completely different in their structure. The network with
large c looks very complicated and has many links with weight larger than
one (thick lines). This is because the large c tends to increase the connections
between the existing nodes. On the other hand, the network with small c has
a simpler, tree-like structure, because connections between the existing nodes
are rare. In what follows, we will investigate various properties that our simple
model exhibits.

3 Theoretical analysis

3.1 Strength distribution

To analytically obtain the statistical properties of the network generated by
the above algorithm, we use a continuous approximation. Now, let us denote
the averaged strength of the node at time t by s(u, t), where u is the time at
which this node is added to the network. Proceeding in the same way as [30],
we describe the time evolution of s(u, t) by

∂s(u, t)

∂t
= (m + 2ctµ)

s(u, t) + σ
∫ t
0 dv s(v, t) + σ

(1)

with boundary condition s(t, t) = m since the node born at time t makes
m connections to the existing nodes at that time. This equation means that
m+2ctµ ends of new edges are distributed through the preferential attachment
at each time step. Total strength of the network is given by

∫ t
0 dv s(v, t) =

2mt +
2ctµ+1

µ + 1
.

Because the general model is not analytically tractable, we restrict ourselves
to two cases: σ = 0 and µ = 1. Setting σ = 0, we obtain the solution

s(u, t) =

√

√

√

√

√

t(mµ + m + ctµ)2+ 1

µ

u(mµ + m + cuµ)2+ 1

µ

. (2)

Note that if we set µ = 1 and m = 1, the strength of the node born at time u
has a simple form

s(u, t) =

√

√

√

√

t(2 + ct)3

u(2 + cu)3
, (3)
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which was obtained by Dorogovtsev and Mendes [30]. To obtain the strength
distribution from Eq. 2 we use the well-known equation

P (s) =
1

t

∣

∣

∣

∣

∣

∂s(u, t)

∂u

∣

∣

∣

∣

∣

−1

.

The strength distribution P (s) takes the form P (s) ≈ 2(mµ + m + ctµ)2+1/µ

(mµ + m)4+2/µ
s−3

for cuµ ≪ 1 because s(u, t) is approximated by

√

√

√

√

t(mµ + m + ctµ)2+1/µ

u(mµ + m)2+1/µ
.

For cuµ ≫ 1, the approximation s(u, t) ≈
√

t(2 + ct)2+1/µ

u2+2µc2+1/µ
gives P (s) ≈

1

1 + µ
s−

2+µ

1+µ . Thus, the distribution of the strength for σ = 0 has two re-

gions with different exponents, −2 + µ

1 + µ
and −3, separated by the crossover

point sc =

[

2(1 + µ)(mµ + m + ctµ)2+1/µ

(mµ + m)4+2/µ

](1+µ)/(1+2µ)

. Fig. 3 shows the com-

parison of distribution of strength between theoretical and numerical results,
where it is seen that the exponents obtained in the simulations agree well with
theoretical ones.

When µ = 1, the solution of Eq. 1 is

s(u, t) = −σ + (m + σ)
t

m

2m+σ (2m + σ + ct)
3m+2σ

2m+σ

u
m

2m+σ (2m + σ + cu)
3m+2σ

2m+σ

. (4)

The strength distribution takes the form

P (s)≈ (2m + σ + ct)(3m+2σ)/m(m + σ)(2m+σ)/m

m(2m + σ)2(m+σ)/m

×(s + σ)−(3m+σ)/m

for cu ≪ 1 and

P (s) ≈
√

m + σ

2
(s + σ)−3/2.

for cu ≫ 1. Hence, the strength distribution for µ = 1 also has two re-
gions with exponents −3/2 and −(3m + σ)/m, and they crossover at sc =
(m + σ)(2m + σ + ct)222m/(3m+2σ)

m2m/(3m+2σ)(2m + σ)4(m+σ)/(3m+2σ)
−σ. Fig. 4 shows the comparison of strength

distribution between theoretical and numerical results for µ = 1.

Fig. 5 shows the dependency of the power-law exponent of the strength distri-
bution on the parameters µ, m, and σ. If σ = 0, the strength distribution P (s)
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obeys the exponent −3 for cuµ ≪ 1 and the exponent −2+µ
1+µ

for cuµ ≫ 1. The
exponent for cuµ ≫ 1 ranges from 1 to 2. If µ = 1, the strength distribution
obeys the exponent −3m+σ

m
for cu ≪ 1 and −3/2 for cu ≫ 1. Since we assumed

that the inequality σ > −m holds, the exponent of the strength distribution
for cu ≪ 1 can take any value smaller than −2. Although we assumed that
parameters µ, σ, and m can take any value, we restrict our analysis to the case
µ = 1, σ = 0, and m = 1 hereafter and present only the numerical results,
because the other cases are rather complicated and not analytically tractable
except for the strength distribution.

3.2 Degree distribution

In order to obtain the degree distribution analytically, we limit ourselves to
the model with µ = 1, σ = 0, and m = 1. We consider a continuous version
of the adjacency matrix aij as we did with si. Let us consider the averaged
connectivity of the nodes at time t, a(u1, u2, t), where two nodes at each end
of the link are added at time u1 and u2. The connectivity a(u1, u2, t) satisfies
the differential equation

∂a(u1, u2, t)

∂t
= 2ct

s(u1, t)s(u2, t)
(

∫ t
0 dv s(v, t)

)2 [1 − a(u1, u2, t)],

which has a general solution

a(u1, u2, t) = 1 − exp



− (2 + ct)2

√

u1u2(2 + cu1)3(2 + cu2)3





× F (u1, u2), (5)

where F (u1, u2) is an arbitrary function. Although the boundary condition

a(t, u, t) = a(u, t, t) =
s(u, t)

∫ t
0 dv s(v, t)

=

√

2 + ct

tu(2 + cu)3

cannot be satisfied, we attempt to approximately satisfy it by setting F (u1, u2) =
1 and Taylor expanding to obtain

a(t, u, t) = a(u, t, t) =

√

2 + ct

tu(2 + cu)3
+ · · ·

=
s(u, t)

∫ t
0 dv s(v, t)

.
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Hence, Eq. 5 is an approximate solution of connectivity if F (u1, u2) = 1.

In the same way, the average degree k(u, t) is defined by

k(u, t) =
∫ t

0
dv a(u, v, t).

Splitting the integral into two regions cu ≪ 1 and cu ≫ 1,

k(u, t) =
∫ t

0
dv a(u, v, t)

≈
∫ 2/c

0
dv



1 − exp



− (2 + ct)2

√

uv(2 + cu)323









+
∫ t

2/c
dv



1 − exp



− (2 + ct)2

√

uv(2 + cu)3(cv)3









= t −
∫ 2/c

0
dv exp

(

−A/
√

8v
)

−
∫ t

2/c
dv exp

[

−A/
(√

c3v2
)]

, (6)

where A = (2 + ct)2/
√

u(2 + cu)3. The first integral of Eq. 6 reduces to

∫ 2/c

0
dv exp

(

− A√
8v

)

=

(

2

c
− A

2
√

c

)

exp

(

−
√

cA

4

)

+
A2

8
Γ

(

0,

√
cA

4

)

, (7)

where Γ(a, b) is the incomplete gamma function. To obtain the scaling behavior
of this integral, we use the first-order approximation in two regimes,

√
cA ≫ 1

and
√

cA ≪ 1. The first term of Eq. 7 converges to zero for
√

cA ≫ 1 and is
approximated by

(

2

c
− A

2
√

c

)(

1 −
√

cA

4

)

≈ 2

c
− A√

c
.

The second term of Eq. 7 x2Γ(0, x) converges to zero for both regimes. Eq. 7
is hence approximated by











0 (
√

cA ≫ 1)
2

c
− A√

c
(
√

cA ≪ 1).
(8)

The second integral of Eq. 6 reduces to

7



∫ t

2/c
dv exp

[

−A/
(√

c3v2
)]

=

[

exp

(

− A√
c3v2

)

+

√

πA√
c3

erf

(
√

A√
c3

1

v

)]t

2/c

= t exp

(

− A√
c3t2

)

+

√

πA√
c3

erf

(
√

A√
c3

1

t

)

−2

c
exp

(

−
√

cA

4

)

−
√

πA√
c3

erf





√

A
√

c

2



 . (9)

For
√

cA ≫ 1, Eq. 9 is approximated by

t

(

1 − A√
c3t2

)

+

√

πA√
c3

√

A√
c3

1

t

2√
π
− 0 −

√

πA√
c3

≈ t +
A√
c3t

−
√

πA√
c3

≈ t −
√

πA√
c3

.

For
√

cA ≪ 1, this equation is approximated by

t

(

1 − A√
c3t2

)

+

√

πA√
c3

√

A√
c3

1

t

2√
π

−2

c

(

1 −
√

cA

4

)

−
√

πA√
c3

√

A
√

c

2

2√
π

≈ t

(

1 − A√
c3t2

)

+
2A√
c3t

− 2

c

(

1 −
√

cA

4

)

− A√
c

≈ t − 2

c
− A

2
√

c
,

where the last approximation uses ct ≫ 1. Note that assuming ct ≫ 1,

A√
c3t2

≈ c2

√

u(2 + cu)3
→ 0

for both regimes and erf(x) ≈ 2√
π

x for x ≪ 1. Eq. 9 is hence approximated

by

8





















t −
√

πA√
c3

(
√

cA ≫ 1)

t − 2

c
− A

2
√

c
(
√

cA ≪ 1).
(10)

Therefore, from Eqs. 6, 8, and 10 we obtain

k(u, t)≈






√

πA/
√

c3 (
√

cA ≫ 1)

3A/(2
√

c) (
√

cA ≪ 1).

(i) When c is larger and cu ≫ 1 for all u,

k(u, t)≈















√

π

c

t

u
(
√

cA ≫ 1)

3t2

2u2
(
√

cA ≪ 1),
(11)

which gives two forms: P (k) ≈
√

π/c/k2 if
√

cA ≫ 1 and P (k) ≈
√

3/8k−3/2

if
√

cA ≪ 1 (crossover at kc =
8π

3c
) (Fig. 6). The degree distribution of the

network with c = 0.5, σ = 0, m = 1, and µ = 1 is well described by Eq. 11.
(ii) When c is sufficiently small and

√
cA ≪ 1 holds for all u,

k(u, t) ≈ 3A/(2
√

c)≈



















3
√

c3t2

4
√

2u
(cu ≪ 1)

3t2

2u2
(cu ≫ 1),

(12)

which gives P (k) ≈ 9(ct)3/(16k3) if cu ≪ 1 and P (k) ≈
√

3/8k−3/2 if cu ≫ 1

(crossover at kc =
3

25/3
(ct)2) (Fig. 7). The degree distribution of the network

with c = 1.0 × 10−4, m = 1, µ = 1, and σ = 0 is in good agreement with
Eq. 12.

Although we cannot derive an analytical form of the degree distribution in the
general model where the conditions µ = 1, σ = 0, and m = 1 are not satisfied,
it is possible to understand how these parameters modify the degree distribu-
tion in a qualitative way. The network with small µ decreases the degree of
nodes because fewer number of connections are made between existing nodes
(Fig. 6). The network with σ = −0.5 has nodes with larger degree number
than the maximum of the degree number in the network with σ = 0 (Fig. 7).
This is because the growth rates proportional to si + σ is much slower than
the rate proportional to si if si is small, and thus the new connections are
distributed among the nodes with large strength and degree.
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From Eqs. 3, 12, and 11, we find the relationship between the degree and the
strength (Figs. 8 and 9). The degree k is proportional to the strength s for√

cA ≪ 1, whereas k ≈
√

π/cs1/2 holds for cu ≫ 1 and
√

cA ≫ 1 . The linear

relationship for
√

cA ≪ 1 comes from the fact that the weights of almost all
links between ‘young’ nodes equal unity. The relationship k ∝ s holds for the
network with µ = 0.1 (Fig. 8) because small µ makes the increment of the
weights of the existing links less frequent and the weights of most links remain
unity.

3.3 Weight distribution

As in the case of the adjacency matrix, we can define the continuous version
of the weight matrix wij, w(u1, u2, t), whose dynamics are governed by the
differential equation

∂w(u1, u2, t)

∂t
= 2ct

s(u1, t)s(u2, t)
(

∫ t
0 dv s(v, t)

)2 .

The solution is given by

w(u1, u2, t) = (2 + ct)2/
√

u1u2(2 + cu1)3(2 + cu2)3.

Note that the relationship
∫ t
0 dv w(u, v, t) = s(u, t) is satisfied. Using the rela-

tionship

P (w, u1, t)du1dw =
1

t2
du1du2, (13)

we obtain

P (w, u1, t) =
1

t2

∣

∣

∣

∣

∣

∂(u1, u2)

∂(u1, w)

∣

∣

∣

∣

∣

=
(2 + cu2)u2

t2(1 + 2cu2)w
(14)

and integrating it with respect to u1 gives the weight distribution. Assuming

cu1 ≫ 1, cu2 ≫ 1, and thus w ≈ t2

cu2
1u

2
2

, the distribution P (w, u1, t) is given

by

P (w, u1, t) ≈
cu2

2

2t2cu2w
≈ w−3/2

2
√

cu1t
.

The distribution P (w) hence obeys the exponent −3/2 for large c (Fig. 10). In
the same way as the degree distribution, we can understand how the parameter
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µ affects the weight distribution. In the network with µ = 0.1, slow growth
of the existing nodes makes the slope of the log of the weight distribution
steeper. If c is small and cu1 ≪ 1 and cu2 ≪ 1 hold for the nodes which have
the edges with large weight, we obtain

P (w, u1, t) ≈
2u2

t2w
≈ (2 + ct)4w−3

32u1t2
,

from which we see the power-law exponent −3 for P (w) (Fig. 11). In addition,
it is often observed that the average weight scales with the degrees of the
nodes as 〈wij〉 = (kikj)

θ [24]. For cu1 ≫ 1, cu2 ≫ 1 and
√

cA ≫ 1, the

approximations w(u1, u2, t) ≈ t2

cu2
1u

2
2

and k(u, t) ≈
√

π

c

t

u
give the exponent

θ = 2. For cu1 ≪ 1, cu1 ≪ 1, and
√

cA ≪ 1, the approximations w(u1, u2, t) ≈
(2 + ct)2

8
√

u1u2

and k(u, t) ≈ 3
√

c3t2

4
√

2u
give the exponent θ = 1. These exponents are

in a good agreement with the simulation result (Figs. 12 and 13). The network
with σ = −0.5 has a much larger proportion of links with large weight than the
network with σ = 0 (Fig. 13). In this network, the nodes with strength 1 grow
slower than in the network with σ = 0, and thus the weights are distributed to
the nodes with larger strength, that is, the nodes which have links with large
weight.

We summarized the power-law exponents derived analytically in Fig. 14. Al-
though in many cases we cannot derive the exponents in an analytical form,
the present model changes its power-law exponents depending on the model
parameters as shown in the numerical results above.

4 Real-world networks and the model

Next, we will examine whether the simple weighted scale-free network model
we have presented in this paper can reproduce the statistical properties of real-
world networks. Networks of words [6], coauthorship [1] and collaboration [2]
are reported to be scale-free networks. We estimate the power-law exponents of
these networks and compare them with the exponents of the model networks.

In the WordNet, a node represents a word, which is connected to the preceding
and succeeding words in a sentence [6]. The weight of a link is the number of
the times the words corresponding to the nodes on the two ends of the link ap-
peared side by side in the text. Dorogovtsev and Mendes [30] reported that the
degree distribution of the WordNet is well-described by their network model.
Since our model can be regarded as a generalization of their model, we ex-
amined whether our model could reproduce its properties including properties
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related to weight and strength, which were not taken into account in the Doro-
govtsev and Mendes model. There are 57708 unique words and 5×106 word oc-
currences in the WordNet we reconstructed from the novels of Charles Dickens
distributed by Project Gutenberg (http://www.gutenberg.org/wiki/Main Page).
Setting m = 1, µ = 1, and σ = 0 as in the model of Dorogovtsev and Mendes,
we obtain c = 3.13 × 10−3 from the summation of the strength 1.05 × 107.
The model network and the WordNet show an excellent agreement except for
the degree-weight relationship (Fig. 15). In the WordNet, the expected link
weight 〈wij〉 tends to be slightly larger than that of the model network. It is
because the connection probability of the words is not determined only by the
frequency of these words. Some pairs of words such as ‘in the’ tends to appear
side by side frequently, whereas some others such as ‘an the’ never appear,
although the words ‘an’ and ’the’ frequently appear in the text. This selectiv-
ity more deeply affects the relationship between two nodes than the statistical
properties of single nodes. Thus, the strength, degree, and weight distributions
of the WordNet are fitted by the present model even though degree-weight re-
lationship of the WordNet cannot be explained by this model. We can safely
say that our model successfully generalizes the model of Dorogovtsev and
Mendes and that our model captures an important feature of the WordNet.
What must be noticed is that the present model also accounts for the distri-
bution of the weight of a link, which corresponds to the number of times the
two words appear side by side, without degrading the fit to the distributions
of the strength and degree.

Network of the coauthorship in the field of geology also shows a good agree-
ment with the present model. Assuming m = 1, µ = 1, and σ = 0, the quantity
c can be estimated as c = 1.5×10−4 by the condition that, in the reconstructed
coauthorship network, t is the number of researchers (100945) and 2t+ct2 must
be equal to the summation of the strength, 1.75× 106. The smallness of c im-
plies that there are few research papers on which no new author contributes.
The network generated by this model with the above estimated parameters
exhibits scale-free properties similar to the real collaboration network of coau-
thorship (Fig. 16). The exponents of the various scale-free properties were
simultaneously derived from a single real-measured model parameter c in the
coauthorship network as well as in the WordNet. However, there exists some
difference between the model network and the coauthorship network. First, de-
gree distribution of the model network has a longer tail than the coauthorship
network. This is because an author tends to write a coauthored paper with
the authors s/he collaborated earlier. This tendency decreases the degree of a
node and makes the degree distribution steeper in the coauthorship network.
The difference in degree-strength relationship between the model and the real
coauthorship results from the same tendency. Second, the weight distribution
of the collaboration network has a longer tail than the model network. This
is another consequence of the same tendency. Once two authors have collabo-
rated, the number of times they collaborate increases faster than in the model
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network. Thus the model network cannot reproduce fully the properties of the
coauthorship network because, as is the case with WordNet, there exists a
correlation between the nodes.

Reconstructing the collaboration network of the actors/actresses in the same
way, we found that this network also exhibits scale-free properties repro-
duced by the present model (Fig. 17). Since the network contains 1123031
actors/actresses and the sum of the strength equals 1.4 × 108, we set the pa-
rameters as t = 1123031, m = 10, µ = 1, σ = 0, and c = 1 × 10−4. Although
we assumed m = 1 for the WordNet and the coauthorship network, here we
assume m = 10, because the model with the parameter m = 10 fits better
to the degree and strength distribution than the model with m = 1. The
larger m implies that a new actor/actress collaborates with many existing
actors/actresses. It is not surprising because a much larger number of ac-
tors/actresses appear, on average, in a movie than in a scientific paper. Thus,
the parameter m of the model reflects the structure of the real collaboration
network. The difference in the degree and weight distributions and other rela-
tionships between the model and the collaboration network can be explained
by the fact that an actor/actress tends to collaborate many times with the
same actors/actresses, which is the same reason as the above two cases.

5 Conclusion

Extending our previous model, we constructed a model which generates weighted-
scale free networks with variable power-law exponents. The model network
grows through the weight-driven preferential attachment and exhibits scale-
free properties. The advantage of this model is that the power-law exponents of
the strength, degree, weight distribution and the relationships between them,
can be controlled by changing the parameters µ and σ. This flexibility enables
the model network to fit very well to real-world networks. Furthermore, our
proposed model is mathematically tractable, which allows us to understand the
underlying essential mechanisms. We expect that the present model becomes
a theoretical tool in a wide range of studies on complex systems including
oscillators, disease propagation, packet transport, and opinion formation.
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Fig. 1. Schematic explanation of the rule for generating the network. The numbers
on a node and near its links indicate node strength and link weights, respectively.
At each time step, a new single node (a blue circle) appears and connects to existing
nodes with links of weight one (a blue link). This new link is created by preferential
attachment with a probability proportional to the strength of the existing node
(Rule 1 in the text). At the same time, some pairs of existing nodes are chosen on
a simple strength preferential rule (see the main text for details), and a new link of
weight one (a red link) is created between these chosen nodes (Rule 2a). If a link
already exists between them, the weight of the link (a green link) is incremented by
one (Rule 2b).

c ≈1 c 1

Fig. 2. Dependence of the network stricture on the parameter c. Networks with
50 nodes generated with the parameters c = 0.5 (left) and c = 0.0001 (right) are
shown. The width of the links is proportional to their weights. There are many
loops in the network with large c, whereas the network with small c has a tree-like
structure without loops. See the main text for details.
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Fig. 3. Comparison of strength distribution between theoretical and numerical
results for a network with large c. Strength distribution of a network with µ = 0.1
shows a larger exponent (2.1/1.1) than that of a network with µ = 1 (3/2). Note
that the simulation results show no crossover points because they occur at strengths
larger than the greatest node strength present in the network. The parameters m
and σ are set to 1 and 0, respectively. The bin width is set to 1 for s < 100 and 100
for s > 100 because points are sparse in the region s > 100.
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Fig. 4. Comparison of distribution strength between theoretical and numerical
results for the network with small c. This figure shows the strength distribution
of the network with σ = 0 (circle) and σ = −0.5 (asterisk). The network with
σ = −0.5 shows a smaller exponent (5/2) than the network with σ = 0 (3) in the
second regime. The parameters m and µ are set to 1. Note that for the network with
c = 1.0× 10−4 the power-law exponent changes at the crossover point indicated by
the arrow.
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Fig. 7. Distribution of degree in the networks with small c. Degree distribution for
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Fig. 8. Relationship between strength and degree for a network with large c. The
relationships k ∝ s1/2 and k ∝ s hold for the networks with µ = 1 and µ = 0.1,
respectively. The same parameters as in Fig. 3 are used.
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Fig. 9. Relationship between strength and degree for a network with small c. The re-
lationship k ∼ s holds for the networks with σ = 0 and σ = 1. The same parameters
as in Fig. 4 are used.
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Fig. 10. Distribution of weights. No crossover behavior is observed because cu ≫ 1
holds for almost all nodes in the network with c = 0.5 and µ = 1. The same
parameters as in Fig. 3 are used.

20



10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

P
(w

)

w

w-3

c=1✕ 10-4 t=100000 σ=0
σ=-0.5

Fig. 11. Distribution of weights. No crossover behavior is observed because cu ≪ 1
holds for almost all nodes in the network with c = 1.0×10−4. The same parameters
as in Fig. 4 are used.
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Fig. 13. The relationship between degree and weight for networks with small c.
The relationship 〈wij〉 ∼ kikj holds for the networks with σ = 0 and σ = −0.5. The
same parameters as in Fig. 4 are used.
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Fig. 15. Comparison of scale-free properties between the WordNet (filled circles) and
the present model (cross). Strength distribution (top left), degree distribution (top
right), weight distribution (middle left), strength-degree relationship (middle right),
and degree-weight relationship (bottom left) are shown. Odd number of strength and
degree has much smaller probability, which is manifested in the region s < 10 and
k < 10, because, in most cases, a word is connected to the previous and next words
in the sentence while the words at the head and the tail of the sentence are connected
by the next word and the previous word only, respectively. We show the power-law
exponents for the real data and the simulation results, except for the degree-weight
relationship, which was difficult to fit by a power-low relationship. The WordNet
is constructed from the writings of Charles Dickens in Project Gutenberg.
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Fig. 16. Comparison of scale-free properties between the coauthorship network
(filled circles) and the present model (cross). Strength distribution (top left),
degree distribution (top right), weight distribution (middle left), strength-de-
gree relationship (middle right), and degree-weight relationship (bottom left) are
shown. The coauthorship network is reconstructed from the Geological Literature
Search System (GEOLIS+ CD-ROM Ver.5) provided by AIST (permission number
63500-A-20070322-001).
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Fig. 17. Comparison of scale-free properties between the actor/actress collabora-
tion network (filled circles) and the present model (cross). Strength distribution (top
left), degree distribution (top right), weight distribution (middle left), strength-de-
gree relationship (middle right), and degree-weight relationship (bottom left) are
shown. The collaboration network is reconstructed from the data provided by The
Internet Movie Database (http://www.imdb.com/).
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