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Analysis S1: Linear Dynamical Model

Let xi be the position of particle i and bi be its velocity with no interaction. The dynamics are described
by

ẋi = bi +
N∑

j=1

Wij (xj − xi) , (S-1)

where the connection weight matrix W is a symmetric matrix, and Wij ≥ 0. By using a moving coordinate
system, we can assume

N∑
i=1

bi = 0 (S-2)

without loss of generality. In this case, we can assume that the mean of xi is 0. In a matrix expression,
we have

~̇x = ~b + W~x − Wd~x, (S-3)

where

Wd =



∑N
j=1 W1j 0 0 · · · 0

0
∑N

j=1 W2j 0 · · · 0
0 0

∑N
j=1 W3j 0

...
...

. . .
...

0 0 0 · · ·
∑N

j=1 WNj

 . (S-4)

Because the Laplacian matrix L defined by

L = Wd − W (S-5)

is non-negative definite, the positions of the particles converge to fixed points. After the convergence, we
have

~̇x = ~b − L~x = 0. (S-6)

We regard the variance V of ~x as the output of this system. When all particles constitute a connected
graph, the rank of L is N − 1 [1]. Note that

L~1 = ~0, (S-7)

where ~1 = [1, 1, . . . , 1]T and ~0 = [0, 0, . . . , 0]T . L is a real symmetric matrix. Thus, we can expand L as

L =
N−1∑
i=1

λi~ui~u
T
i , (S-8)
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where ~ui is an eigenvector of L and λi is the eigenvalue corresponding to ~ui. Notably, ~1 ⊥ ~ui. We can
not obtain the inverse of L to solve Eq. (S-1) because L is not full rank. Thus, we define a full-rank real
symmetric matrix L̃ by using a non-zero constant β:

L̃ = L + β1, (S-9)

where

1 = ~1~1T . (S-10)

By using L̃, we can obtain a solution of Eq. (S-6) by

~x = L̃−1~b. (S-11)

By multiplying ~1 from the left in Eq. (S-3), we see that this solution satisfies
∑

xi = 0. The output V
can be derived as follows:

V =
~x · ~x
N

=
1
N

~bT (L̃−1)T L̃−1~b

=
1
N

~bT L̃−1L̃−1~b, (S-12)

because L̃−1 is also a symmetric matrix. In the following equations, we regard each coupling strength
Wij as a parameter. Because we have introduced the parameter β, the parameter sensitivity for β should
also be taken into account. However V is independent of β because

∂V

∂β
= − 1

N
~bT L̃−1

(
∂L̃
∂β

L̃−1 + L̃−1 ∂L̃
∂β

)
L̃−1~b

= − 1
N

~bT L̃−1
(
1L̃−1 + L̃−11

)
L̃−1~b

= − 1
N

~bT L̃−1

(
2N

β
1
)

L̃−1~b

= − 1
N

~bT L̃−1 2N2

β2
1~b

= − 1
N

~bT L̃−1 2N2

β2
~0

= 0, (S-13)

where we used

∂L̃−1

∂β
= −L̃−1 ∂L̃

∂β
L̃−1, (S-14)

∂L̃
∂β

= 1, (S-15)

L̃−1 =
N−1∑
i=1

1
λi

~ui~u
T
i +

1
β
1, (S-16)

1L̃−1 =
N

β
1. (S-17)
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The IMPS is derived as

IMPS =
∑
〈ij〉

∣∣∣∣Wij

V

∂V

∂Wij

∣∣∣∣+ ∣∣∣∣ βV ∂V

∂β

∣∣∣∣
=

1
N

∑
〈ij〉

∣∣∣∣∣Wij

V

∂~bT L̃−1L̃−1~b

∂Wij

∣∣∣∣∣+ 1
N

∣∣∣∣− β

V
~bT L̃−1

(
1L̃−1 + L̃−11

)
L̃−1~b

∣∣∣∣
=

1
N

∑
〈ij〉

∣∣∣∣∣−Wij

V
~bT L̃−1

(
∂L̃

∂Wij
L̃−1 + L̃−1 ∂L̃

∂Wij

)
L̃−1~b

∣∣∣∣∣
+

1
N

∣∣∣∣− β

V
~bT L̃−1

(
1L̃−1 + L̃−11

)
L̃−1~b

∣∣∣∣ , (S-18)

where 〈〉 is the summation over the pairs of (i, j) with Wij 6= 0. Here we assume that SPSs have the same
sign. By using

∑
〈ij〉

Wij
∂L̃

∂Wij
= L, (S-19)

we obtain

IMPS =
1
N

∣∣∣∣− 1
V

~bT L̃−1[LL̃−1 + L̃−1L]L̃−1~b

− β

V
~bT L̃−1

(
1L̃−1 + L̃−11

)
L̃−1~b

∣∣∣∣
=

1
N

∣∣∣∣− 1
V

~bT L̃−1
[
(L + β1)L̃−1 − L̃−1(L + β1)

]
L̃−1~b

∣∣∣∣
=

1
N

∣∣∣∣− 1
V

~bT L̃−1[L̃L̃−1 + L̃−1L̃]L̃−1~b

∣∣∣∣
=

1
N

∣∣∣∣− 2
V

~bT L̃−1L̃−1~b

∣∣∣∣
=

∣∣∣∣−2V

V

∣∣∣∣
= 2. (S-20)

Analysis S2: Nonlinear Model

The dynamics of phase oscillators are expressed as

dθi

dt
= ωi +

N∑
j=1

Kij sin(θj − θi), (S-21)

where ωi is the natural frequency of oscillator i, K is the symmetric connection weight matrix and
Kij ≥ 0. We use the circular variance Vc of the oscillators [2]

Vc = 1 − r = 1 − 1
N

√
C2 + S2 (S-22)
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in the phase-locked state as the output, where r is the Kuramoto order parameter, C =
∑N

i=1 cos θi and
S =

∑N
i=1 sin θi. We can assume

∑N
i=1 ωi = 0 without loss of generality. In the phase-locked state, the

right-hand side y′
i of Eq. (S-21) is 0; i.e.,

~y′ = ~0. (S-23)

Here we derive the relationship between the connection weights and the phases under the condition that
Eq. (S-23) is satisfied. For a small change ∆~θ of ~θ, we denote the resulting small change in K by ∆K.
We obtain

y′
i + ∆y′

i = ωi +
N∑

j=1

(Kij + ∆Kij) sin(θj + ∆θj − θi − ∆θi)

≈ ωi +
N∑

j=1

(Kij + ∆Kij) [sin(θj − θi) + cos(θj − θi)(∆θj − ∆θi)] . (S-24)

Subtracting y′
i from both sides yields

∆y′
i ≈

N∑
j=1

Kij cos(θj − θi)(∆θj − ∆θi)

+
N∑

j=1

∆Kij [sin(θj − θi) + cos(θj − θi)(∆θj − ∆θi)] . (S-25)

Thus, we obtain

∂y′
i

∂θj
= Jij , (S-26)

∂y′
i

∂Klm
=

{
sin(θm − θl) i = l

0 i 6= l
, (S-27)

where

Jij =

{
−
∑N

s=1 Kis cos(θs − θi) i = j

Kij cos(θj − θi) i 6= j
. (S-28)

Adding the same value to all θs of a phase-locked solution results in another phase-locked solution, and
the latter cannot be distinguished from the former in terms of the circular variance Vc. Thus, we cannot
determine the unique phase-locked solution for this model. However, we can set the average phase to 0,
which will not ruin the generality of our argument. By assuming

∑N
i=1 θi = 0, we can replace Eq. (S-23)

with

yi ≡ ωi +
N∑

j=1

Kij sin(θj − θi) −
N∑

j=1

θj = 0. (S-29)

Hence, ∂yi/∂θj can be derived as

∂yi

∂θj
= Jij − 1 ≡ J̃ij . (S-30)
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The matrix J̃ = (J̃ij) is full rank. Thus, we have

∂θi

∂Klm
= −

N∑
j=1

(J̃−1)ijδjl sin(θm − θl)

= −(J̃−1)il sin(θm − θl). (S-31)

Hence, the derivative of Vc with respect to Klm is given by

∂Vc

∂Klm
= − 1

2N

(
C2 + S2

)−1/2
∂

[(∑N
i=1 cos θi

)2

+
(∑N

i=1 sin θi

)2
]

∂Klm

=
−1
N2r

(
−C

N∑
i=1

sin θi
∂θi

∂Klm
+ S

N∑
i=1

cos θi
∂θi

∂Klm

)

=
1

N2r

(
S

N∑
i=1

cos θi(J̃−1)il − C

N∑
i=1

sin θi(J̃−1)il

)
sin(θm − θl). (S-32)

From the above analysis, we numerically obtain the IMPS by using

IMPS =
∑
〈lm〉

|SPSlm|

=
∑
〈lm〉

∣∣∣∣Klm

Vc

∂Vc

∂Klm

∣∣∣∣ , (S-33)

where 〈〉 is the summation over the pairs of (l, m) with Klm 6= 0.

Analysis S3: Phase Oscillators on Path Graph

In general, nonlinearly coupled oscillator models can not be solved analytically. However, a solution can
be obtained as follows for phase oscillators on a path graph. Here, we assume N oscillators are located
on a path graph (Fig. 5B). Thus, on a path graph, N − 2 vertices are of degree 2, and 2 vertices are of
degree 1. We assume that −ω1 = ωN = 1 and ωi = 0 for 1 < i < N . Under these assumptions, the
dynamics are given by

θ̇1 = −1 + α sin(θ2 − θ1),
θ̇2 = α sin(θ3 − θ2) + α sin(θ1 − θ2),

... (S-34)
θ̇N−1 = α sin(θN − θN−1) + α sin(θN−2 − θN−1),

θ̇N = 1 + α sin(θN−1 − θN ),

where α is the coupling strength. Thus, all of N oscillators are spaced at regular intervals in the phase-
locked state. N oscillators are located in a line every other ∆θ = sin−1(1/α) > 0. We can assume
θi = (i − 1)∆θ in the phase-locked state without loss of generality. The circular variance Vc is given by

Vc = 1 − r = 1 − 1
N

∣∣∣∣∣
N∑

s=1

ei(s−1)∆θ

∣∣∣∣∣ . (S-35)
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J, which is defined in Supplemental Materials Analysis S2, is expressed as

J = α cos(∆θ)


−1 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 0
...

...
. . .

...
0 0 0 · · · −1

 . (S-36)

The IMPS of this undirectional model is obtained by using

IMPS =
α

Vc

∑
〈lm〉

∣∣∣∣ ∂Vc

∂Klm
+

∂Vc

∂Kml

∣∣∣∣
=

α sin(∆θ)
VcN2r

N−1∑
n=1

|Sκc
n − Cκs

n − Sκc
n+1 + Cκs

n+1|, (S-37)

where

N∑
n=1

(J)inκc
n = cos θi, (S-38)

N∑
n=1

(J)inκs
n = sin θi. (S-39)

Since J is of rank N−1 [1], κs
i and κc

i have uncertainty. Thus, we assume that κs
1 = κc

1 = 0 and determine
κs

n and κc
n by recursively using κs

i (i < n) to obtain

κc
n =

1
α cos(∆θ)

n−1∑
s=1

(n − s) cos[(s − 1)∆θ]

=
1

α cos(∆θ)
Re

[
n

zn−1 − 1
z − 1

−
(

zn − z

z − 1

)′
]

κs
n =

1
α cos(∆θ)

n−1∑
s=1

(n − s) sin[(s − 1)∆θ]

=
1

α cos(∆θ)
Im

[
n

zn−1 − 1
z − 1

−
(

zn − z

z − 1

)′
]

(S-40)

where

z = cos(∆θ) + i sin(∆θ). (S-41)
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Thus, assuming N∆θ ≤ 2π, IMPS is derived as

IMPS =
α sin(∆θ)

VcN2rα cos(∆θ)

N−1∑
n=1

|SRe[fn(z)] − CIm[fn(z)] − SRe[fn+1(z)] + CIm[fn+1(z)]|

=
tan(∆θ)
VcN2r

N−1∑
n=1

|SRe[fn(z) − fn+1(z)] − CIm[fn(z) − fn+1(z)]|

=
tan(∆θ)
VcN2r

N−1∑
n=1

∣∣∣∣Im(zN − 1
z − 1

[fn(z) − fn+1(z)]
)∣∣∣∣

=
tan(∆θ)
VcN2r

∣∣∣∣∣∣Im
zN − 1

z − 1

(
N−1∑
n=1

−zn + 1
z − 1

)∣∣∣∣∣∣
=

tan(∆θ)
N2r(1 − r)

∣∣∣∣∣Im
[

zN − 1
z − 1

(
−zN + N(z − 1) + 1

(z − 1)2

)]∣∣∣∣∣ , (S-42)

where we have used

fn(z) = n
zn−1 − 1

z − 1
−
(

zn − z

z − 1

)′

, (S-43)

fn(z) − fn+1(z) = n
zn−1 − 1

z − 1
−
(

zn − z

z − 1

)′

− (n + 1)
zn − 1
z − 1

+
(

zn+1 − z

z − 1

)′

= n
zn−1 − zn

z − 1
− zn − 1

z − 1
−
(

zn − z

z − 1
− zn+1 − z

z − 1

)′

= −nzn−1 − zn − 1
z − 1

+ nzn−1

= −zn − 1
z − 1

. (S-44)
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Figure S1: Correlation between IMPS and Average Path Length
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Figure S1. (A) Scatter diagram of IMPS(α = 10) − IMPS(α = 100) against average path length for 50
Watts–Strogatz networks (N = 1000, rewiring probability= 0.05). Correlation coefficient r is −0.43
(p < 0.01). (B) Scatter diagram of IMPS(α = 2.5) − IMPS(α = 100) against average path length for 50
Barabási–Albert networks (N = 1000). Correlation coefficient r is 0.0068 (non-significant).
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