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Analysis S1: Linear Dynamical Model

Let x; be the position of particle i and b; be its velocity with no interaction. The dynamics are described
by

ii = bz + Z Wij (SCJ‘ - LL’Z) 5 (S-l)

where the connection weight matrix W is a symmetric matrix, and W;; > 0. By using a moving coordinate
system, we can assume

> =0 (5-2)

without loss of generality. In this case, we can assume that the mean of z; is 0. In a matrix expression,
we have

Z=b+Wi—- Wiz (S-3)
where
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Because the Laplacian matrix L defined by
L=W!-W (S-5)

is non-negative definite, the positions of the particles converge to fixed points. After the convergence, we
have

Z=b—-L¥=0. (S-6)

We regard the variance V of & as the output of this system. When all particles constitute a connected
graph, the rank of L is N — 1 [1]. Note that

L1 =0, (S-7)
where T = 1,1,...,1]7 and 0= [0,0,...,0]7. Lis a real symmetric matrix. Thus, we can expand L as
N-1

L= P THTIN (S-8)



where @; is an eigenvector of L and ); is the eigenvalue corresponding to @;. Notably, I L @;. We can
not obtain the inverse of L to solve Eq. (S-1) because L is not full rank. Thus, we define a full-rank real
symmetric matrix L by using a non-zero constant (:

L=L+71, (5-9)
where
1=117. (S-10)
By using L, we can obtain a solution of Eq. (S-6) by
Z=L""b. (S-11)

By multiplying 1 from the left in Eq. (S-3), we see that this solution satisfies > z; = 0. The output V
can be derived as follows:
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because L1 is also a symmetric matrix. In the following equations, we regard each coupling strength
W;; as a parameter. Because we have introduced the parameter 3, the parameter sensitivity for 3 should
also be taken into account. However V is independent of 3 because

v lopz (0L | = 0L\ - -
— = LY=L L= L%
23 N (aﬁ Y,
R - . -
- —NETL‘l (1L—1 +L—11) L5
o 1—*T~71 2N "71—’
= 'L (6 1>L b
Lo 2N 5
= 'L ?15
 1op- 2N2
= 'L T
= 0, (S-13)
where we used
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The IMPS is derived as
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where () is the summation over the pairs of (¢, j) with W;; # 0. Here we assume that SPSs have the same
sign. By using
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Analysis S2: Nonlinear Model

The dynamics of phase oscillators are expressed as

do;

o oWt ZK” sin(0; — 6;), (S-21)

Jj=1

where w; is the natural frequency of oscillator 7, K is the symmetric connection weight matrix and
K;; > 0. We use the circular variance V of the oscillators [2]

V.=1- r—1—ﬁx/02+52 (S-22)



in the phase-locked state as the output, where r is the Kuramoto order parameter, C' = vazl cos f; and
S = Zfil sin#;. We can assume Zfil w; = 0 without loss of generality. In the phase-locked state, the
right-hand side y; of Eq. (S-21) is 0; i.e.,

y = 0. (S-23)
Here we derive the relationship between the connection weights and the phases under the condition that

Eq. (S-23) is satisfied. For a small change AG of é: we denote the resulting small change in K by AK.
We obtain

N
y; + Ay; = w; + Z(Kij + AKZ']') sin(Gj + Aﬁj —0; — Ael)
=1
N
~ w; + Z(K” + AKij) [Sin(ej — 92) + COS(HJ‘ — 91)(A9J — A&l)] . (8—24)
=1

Subtracting y; from both sides yields

N
Ay; ~ Z Kij COS(@j — 92)(A9J — AQz)

N
+> AK;; [sin(0; — 0;) + cos(6; — 0;)(A8; — AB;)]. (S-25)
j=1
Thus, we obtain
dyi _
26, = Jij, (S-26)
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Adding the same value to all fs of a phase-locked solution results in another phase-locked solution, and
the latter cannot be distinguished from the former in terms of the circular variance V.. Thus, we cannot
determine the unique phase-locked solution for this model. However, we can set the average phase to 0,
which will not ruin the generality of our argument. By assuming Zf\il 0; = 0, we can replace Eq. (5-23)
with

N

Yi = w; + Z K;jsin(6 Z (S-29)
Jj=1 J=1

Hence, 0y;/00; can be derived as

gg; = Jij —1= j” (8—30)




The matrix J = (J;;) is full rank. Thus, we have

90 al
= Z )i;0;1sin(0,, — 60;)
0K, =

= —(I Yasin(0, — 6,). (s-31)
Hence, the derivative of V, with respect to K, is given by
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From the above analysis, we numerically obtain the IMPS by using
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where () is the summation over the pairs of (I, m) with K, # 0.

Analysis S3: Phase Oscillators on Path Graph

In general, nonlinearly coupled oscillator models can not be solved analytically. However, a solution can
be obtained as follows for phase oscillators on a path graph. Here, we assume IV oscillators are located
on a path graph (Fig. 5B). Thus, on a path graph, N — 2 vertices are of degree 2, and 2 vertices are of
degree 1. We assume that —w; = wy = 1 and w; = 0 for 1 < ¢ < N. Under these assumptions, the
dynamics are given by

91 = —1+C¥Si1’1(92 —91),
9.2 = OLSiH(03 — 92) + asin(01 — 02),
(S-34)
Onv_ 1 = asin(0y —O0y-1) + asin(@y_2 —On_1),
Oy = 1+ asin(@y_1 — 0n),

where « is the coupling strength. Thus, all of N oscillators are spaced at regular intervals in the phase-
locked state. N oscillators are located in a line every other A = sin™'(1/a) > 0. We can assume
0; = (i — 1)A0 in the phase-locked state without loss of generality. The circular variance V, is given by

N
1 .
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J, which is defined in Supplemental Materials Analysis S2, is expressed as

-1 1 0 0
1 -2 1 0
J = acos(A) o 1 -2 0
0 0 0 -1

The IMPS of this undirectional model is obtained by using

IMPS

where
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(S-39)

Since J is of rank N —1 [1], x¢ and «§ have uncertainty. Thus, we assume that x5 = x§{ = 0 and determine
ks and kS by recursively using & (i < n) to obtain

where
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Thus, assuming NA# < 27, IMPS is derived as
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Figure S1: Correlation between IMPS and Average Path Length
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Figure S1. (A) Scatter diagram of IMPS(a = 10) — IMPS(a = 100) against average path length for 50
Watts—Strogatz networks (N = 1000, rewiring probability= 0.05). Correlation coefficient r is —0.43

(p < 0.01). (B) Scatter diagram of IMPS(a = 2.5) — IMPS(«v = 100) against average path length for 50
Barabési—Albert networks (IV = 1000). Correlation coefficient r is 0.0068 (non-significant).
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