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The behavior of systems is determined by the parameters. Because we seldom know the

detailed structure of a system, metrics of parameter sensitivity should be independent of how

we model the system. We formulate a new parameter sensitivity metric, which we refer to as

“invariant multiparameter sensitivity” (IMPS) because itgives the same result for a class of

equivalent models of a system. To investigate the property of IMPS, we firstly apply IMPS

to resistor circuits and linear dynamical systems. To examine the dependence of IMPS on

network structures, we secondly apply IMPS to nonlinear systems on complex networks. We

find that the IMPS of networks of phase oscillators is essentially independent of the number

of oscillators. We examine the network-structure dependence of IMPS using a simplified

solvable model.

1. Introduction

Over the past few decades, research has increasingly focused on social, biological, eco-

nomical, ecological, and geological systems.1–5) The outputs of these systems depend on pa-

rameters. In these systems, the parameters may fluctuate stochastically and undergo long-term

drift. Thus, understanding the effect of variations in the parameters on the system outputs is

vital for understanding their dynamics.6,7) For example, this approach is used to characterize

electric circuits that are insensitive to variations in individual circuit elements.7–9)

In this study, we focus on the changes in the response of system outputs when the pa-

rameters are changed; this relation is referred to as the “parameter sensitivity” of the system.

Parameter sensitivity has been intensively studied in circuit theory, particularly in resistor–

capacitor networks.7–10) Although parameter sensitivity was originally proposed toevaluate

the sensitivity of electric circuits, it has also been used in many other fields, such as biol-

ogy,11–13) ecology,14) and economics.15) Previous studies have proposed several metrics for
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Fig. 1. (Color online) Unknown heating system (A) and series resistor models (B,C). The models B and C

are electrically equivalent whenR′1 + R′2 + · · · + R′m = R.

parameter sensitivity.16,17)Single parameter sensitivity (SPS) is the ratio of the change in out-

put to the change in parameter.18) Since most systems have more than one parameter, gener-

alizing SPS to multiple parameters is the next logical step.Multiparameter sensitivity (MPS)

is a generalization of SPS for multiple parameters.18) MPS is defined as the square root of the

sum of the squares of SPSs of the system. MPS has been used in analyzing networks with

circuit elements.9,18,19)In biology, MPS was used in clarifying how the integration ofmolec-

ular components generates robust systems such as theEscherichia coli heat-shock response

system and theDrosophila melanogaster circadian clock.11)

The parameter sensitivity of a system is often numerically estimated by quantifying the

parameter sensitivity of its models.8,11–13)Because, in most cases, we do not know the struc-

tures and dynamics of systems completely, a wide variety of models are proposed for a single

system. As an example, let us assume that we want to quantify the parameter sensitivity of the

system of Fig. 1A. When connected to a voltage sourceE, this system exhibits heat flowH.

Here, we assume that this system comprises linear resistors. Even under this assumption, this

system can be modeled by a large number of electric circuit models, such as those in Figs. 1B

and 1 C. Unfortunately, as will be shown in the next section, MPS gives different results for

the models in Figs. 1B and 1 C, which are electrically equivalent models of a single system of

Fig. 1A. Since MPS depends on the choice of the models, we cannot quantify the parameter

sensitivity of the system using MPS.

To address this problem, we propose a new sensitivity metric, which we call “invariant

multiparameter sensitivity” (IMPS). In Sect. 2, we briefly review previously proposed sensi-

tivity metrics and then define IMPS. We use the example of serial resistor models to present

“invariance,” which is an important property of IMPS. In Sect. 3, IMPS for linear dynam-

ical systems is examined. Furthermore, we study the IMPS forphase oscillator models on

complex networks in Sect. 4. IMPS is suggested to vary according to network structures. Fi-

nally, in Sect. 5, we summarize the main results and discuss the potential applications and

limitations of IMPS. Detailed derivations can be found in Supplemental Materials.20)
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2. Invariant Multiparameter Sensitivity

Models of dynamical systems are expressed by the first-orderdifferential equations

~̇x = F
(

t, ~x, ~p
)

, (1)

where t is the time, ~x = [x1, x2, x3, . . . , xn] is the state variable vector, and~p =

[p1, p2, p3, . . . , pm] is the parameter vector. Letq be the output whose sensitivity to parame-

ters we want to quantify. Here, the output can be any value derived from the system, such as

oscillation period, cell growth rate, or energy consumption. For a given outputq, the single

parameter sensitivity with respect to the parameterpi, which we call SPSi, is defined as

SPSi =
pi

q
∂q
∂pi
=
∂ ln q
∂ ln pi

. (2)

SPSi is the ratio of the change in the outputq to the change in the parameterpi.18) SPSi does

not quantify the sensitivity ofq with respect to any other parameters. Generalizing SPS to

multiple parameters, Goldstein and Kuo defined MPS as the L2 norm of SPSs:18)

MPS2 =

m
∑

i=1

SPS2
i . (3)

MPS has been used to quantify the sensitivity of the output tochanges in the entire parameter

set of models.9,18,19)However, MPS often gives different results for two equivalent models of

a system. Consider a model of a circuit with one resistorR, as shown in Fig. 1B. LetH denote

the heat flow from the circuit and letE denote the voltage of the voltage source. We assume

that the heat flowH = E2/R is the output of this model. Because the SPS of this circuit with

respect toR is unity, the MPS is also unity. A current-voltage relationship identical to that

of Fig. 1B can also be implemented by equivalent circuits, such as that shown in Fig. 1C

(assumingR′1 + R′2 + . . . + R′m = R). The MPS of the circuit of Fig. 1C is given by

MPS2 =

m
∑

i=1

(

R′i
H
∂H
∂R′i

)2

=

m
∑

i=1

R′i
2

R2
. (4)

Hence, the MPS of this model decreases asm increases.

In contrast, the L1 norm of SPSs of the circuit for Fig. 1C is given by
m

∑

i=1

|SPSi| =
m

∑

i=1

∣

∣

∣

∣

∣

∣

R′i
H
∂H
∂R′i

∣

∣

∣

∣

∣

∣

= 1, (5)

which equals the L1 norm of SPSs for the circuit of Fig. 1B. Thus, we introduce a new metric
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IMPS, which is the sum of all absolute values of SPSs:

IMPS=
m

∑

i=1

|SPSi| . (6)

The IMPS of the circuit is constant, regardless ofm because the outputH is a homo-

geneous function of degree−1 of resistancesR1,R2, . . ., andRm. Indeed, assuming that the

outputq(p1, p2, p3, . . . , pm) is a homogeneous function of the degreek and that the SPSs in

Eq. (6) have the same sign, we obtain

IMPS =

m
∑

i=1

∣

∣

∣

∣

∣

pi

q
∂q
∂pi

∣

∣

∣

∣

∣

= |k| , (7)

where we use Euler’s theorem
m

∑

i=1

pi

(

∂q
∂pi

)

= kq(p1, p2, p3, . . . , pm). (8)

This is also the case with equivalent circuits of resistors in parallel. These results suggest

that IMPS is independent of the models, and may be a metric forquantifying the sensitivity

of the system itself rather than the model. The IMPSs are the same for all models satisfying

the following conditions: (i) the output is a homogeneous function of the parameters and (ii)

the SPSs have the same sign. These conditions are not necessarily satisfied. However, in the

following, we show that these conditions are approximatelysatisfied in several models of

linear and nonlinear dynamics.

3. Linear Dynamics

There are many systems that can be modeled by elements interacting with each other.21–24)

As a simple example of these models, we examine a model consisting of N particles. Assume

that particlei has the positionxi and the velocity ˙xi, and is attracted to other particles via the

connection weight matrixW = (Wi j). The matrixW is symmetric, has no negative elements,

and is assumed to define a connected graph of particles. Then,the dynamics are defined by

ẋi =
dxi

dt
= bi +

N
∑

j=1

Wi j(x j − xi), (9)

wherebi is the velocity of the particlei with no interaction. The velocitybi is drawn from a

unit normal distribution. The positions of the particles converge to fixed points. The variance

V of the positions at the steady state is used as the output of the model, whose sensitivity is

to be measured. We assume a connected graph because the variance cannot be defined when

particles become disconnected.
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Fig. 2. IMPS (solid line) and MPS (dashed line) for linear dynamicalmodels. Panel A shows IMPS and MPS

as functions ofN. Panel B shows IMPS and MPS as functions of the number of connections forN = 100.

By using the Laplacian matrixL of a weighted graph25) defined by the connection weight

matrix W, we obtain

IMPS =
1
N

∑

〈i j〉

∣

∣

∣

∣

∣

∣

−
Wi j

V
~bT L̃−1

(

∂L̃
∂Wi j

L̃−1 + L̃−1 ∂L̃
∂Wi j

)

L̃−1~b

∣

∣

∣

∣

∣

∣

+
1
N

∣

∣

∣

∣

∣

− β
V
~bT L̃−1(1L̃−1 + L̃−11)L̃−1~b

∣

∣

∣

∣

∣

, (10)

where〈〉 indicates the summation over the connected particle pairs,andL̃i j = Li j + β. β , 0 is

introduced so that̃L is invertible. IMPS is independent ofβ. The detailed derivation is given

in Supplemental Materials Analysis S1.20) By assuming that all SPSs have the same sign, we

obtain IMPS= 2 because the variance is a homogeneous function of degree−2, regardless of

network size and the structure given by the connection weight matrix W as shown in Eq. (S-

20).

Let us examine whether the result IMPS= 2 holds in numerical simulations. Figure 2A

shows that this relation holds for the network of all-to-allcoupling,Wi j = 0 for i = j and

Wi j = 1 otherwise, for a wide range ofN. This suggests that all SPSs have the same sign in

this model. In contrast, the MPS decreases asN increases (Fig. 2A).

In the simulation of Fig. 2B, we start from a fully connected system of sizeN = 100

and eliminate a connection at each step. We confirmed thatW constituted a connected graph.

Thus, the graph at each step is an Erdős–Ŕenyi random graph.26) The IMPS and MPS are

shown in Fig. 2B as functions of the number of connections. This figure shows that MPS de-

pends much more strongly on the number of connections than IMPS. Therefore, these results

indicate that the condition that all SPSs have the same sign is almost satisfied. Moreover,

these results indicate that, for these linear models, the IMPS quantifies how sensitively the

system’s output, that is, the variance of the particle positions, changes in response to a pa-

rameter change in a manner that is independent ofN and the number of connections.
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4. Phase Oscillator Networks

Let us consider a system of oscillatory elements on a network. Oscillatory elements are

often modeled by phase oscillators.21,27,28)Because the precise structure of a network may be

unknown to us, to investigate how IMPS is affected by the choice of network structure used to

model the system, we compare IMPSs of phase oscillators on the three types of network, that

is, Barab́asi–Albert, regular random, and Watts–Strogatz networks.Now, consider a model of

N oscillators connected to each other by the adjacency matrixA = (Ai j), whereAi j = 1 for

connected pairs andAi j = 0 otherwise. The dynamics of the oscillatori are described by

dθi
dt
= ωi +

N
∑

j=1

Ki j sin(θ j − θi), (11)

whereωi is the natural frequency of the oscillatori andKi j is the element (i, j) of the connec-

tion weight matrixK .21,29) For the numerical simulation, we useK = αA, whereα > 0 is the

coupling strength, and draw the natural frequencyωi from a unit normal distribution. Without

loss of generality, we can assume that
∑N

i=1ωi = 0. Forα, we use a sufficiently large value so

that all phase oscillators are phase locked. We use the circular varianceVc of the oscillators

in the phase-locked state30) as the output:

Vc = 1− r = 1−
1
N

√
C2 + S 2, (12)

wherer is the Kuramoto order parameter,C =
∑N

i=1 cosθi, andS =
∑N

i=1 sinθi.

To simulate phase oscillators on complex networks, we use the adjacency matrices given

by Barab́asi–Albert31) (a well-known model of scale-free networks) and regular random net-

works with an average degree of 4. We use outputVc at t = 100 for Barab́asi–Albert and

regular random networks. To generate a Barabási–Albert network, we use Gephi complex

generators. We start from 2 connected vertices and add a vertex with 2 edges in each step un-

til we haveN vertices. We generate regular random networks with degree 4using the Matlab

Random Regular generator. The phases of all oscillators are distributed uniformly att = 0.

By using the implicit function theorem, we derive∂Vc/∂Ki j [Eq. (S-32)].20) We calculate

the IMPS numerically using Eq. (S-33).20) Unlike for equivalent electric circuits and linear

dynamical models, IMPSs for phase oscillator networks are not constant (Fig. 3). This result

is attributed toVc not being a homogeneous function. Figure 3A shows the results of 10 000

phase oscillators on 5 Barabási–Albert networks and Fig. 3B shows the results of 10 000

phase oscillators on 5 regular random networks generated bydifferent random seeds. The

IMPSs converge to 2, as shown in Figs. 3A and 3B. This is because, as the coupling strength

α increases, the models can be described by linearized dynamics. The nonlinear dynamics of
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Table I. Average path length of oscillator networks (N = 10 000)

Barab́asi–

Albert

Regular

Random

300-connection

Rewired Watts–Strogatz

3000-connection

Rewired Watts–Strogatz

Mean 5.03 7.73 36.1 10.9

Standard Deviation 2.20×10−2 1.53×10−3 0.343 2.88× 10−2

Eq. (11) become the linear dynamics of Eq. (9), and the circular variance of Eq. (12) becomes

proportional to the variance in the largeα limit.

In Fig. 4, for models on Barabási–Albert networks, we compare the IMPS and MPS as

functions of coupling strengthα for models with differentN values. As shown in Fig. 4A,

the IMPSs for models with differentN values are close together. In contrast, as shown in

Fig. 4B, the MPSs for models with differentN values are well separated. IMPSs for models

with differentN values converge to the same value, 2, for the nonlinear models as well as the

linear models.

Next, to examine another type of complex network, we use the adjacency matrices given

by Watts–Strogatz networks1) with an average degree of 4. We use the outputVc at t = 200

for Watts–Strogatz networks. To generate a Watts–Strogatznetwork,1) we start from a regular

ring lattice with N vertices; each vertex is connected to 4 neighbors, 2 on each side. We

randomly select an edge and rewire one of its endpoints step by step either 300 or 3000

times. The phases of all oscillators att = 0 are drawn from a Gaussian distribution with a

mean of 0 and a standard deviation of 0.1.

Figure 3C1 (3C2) shows the IMPS for 10 000 phase oscillators on Watts–Strogatz net-

works with 300 (3000) of 20 000 connections rewired. Figures3C1 and 3C2 are generated

using different random seeds. For the models on Watts–Strogatz networks, although the IMPS

approaches 2 asα increases, the IMPS deviates from 2 more than the IMPS for themodels on

Barab́asi–Albert and regular random networks. As shown in Fig. 3C1,the IMPS curves are

distributed more widely than those of Figs. 3A and 3B. The result suggests that the IMPS of

the models on Watts–Strogatz networks varies from network to network. On the other hand,

IMPSs are within a narrower range for Barabási–Albert and regular random networks. For

the models on Barabási–Albert and regular random networks, the IMPS convergesto 2 from

above, whereas, for models on Watts–Strogatz networks, theIMPS converges to 2 from be-

low. These observations suggest that the circular variancefor Barab́asi–Albert and regular

random networks changes much more sensitively depending onthe coupling strength of each
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vertex than the circular variance for Watts–Strogatz networks when the coupling strengthα

is small. This implies that IMPS reflects some difference in network structures and network

metrics among Barabási–Albert and regular random networks and Watts–Strogatznetworks.

To clarify the factor reflected in IMPS, next we examine a solvable oscillator model. Com-

pared with Barab́asi–Albert and regular random networks, Watts–Strogatz networks have

longer average path lengths (Table I). Watts–Strogatz networks have a larger number of long

one-dimensional (1-D) lattice like structures (Fig. 5A) than Barab́asi–Albert and regular ran-

dom networks. To investigate the effects of 1-D lattice like structures, we simplify a regular

1-D lattice to a path graph, for which all vertices and edges lie on a single straight line
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Panel C shows the IMPS for models with different-length path graphs as a function of the coupling strengthα.

In panel C, the phases ofN oscillators are separated by regular intervals.

(Fig. 5B). WhenN phase oscillators are connected to each other along a path graph and have

natural frequencies−ω1 = ωN = 1 andωi = 0 for 1 < i < N, their phases are separated by

regular intervals (∆θ). IMPSs for the oscillators on different lengths can be obtained as

IMPS=
tan(∆θ)

N2r(1− r)

∣

∣

∣

∣

∣

∣

∣

Im















zN − 1
z − 1

(

−zN + N(z − 1)+ 1
(z − 1)2

)















∣

∣

∣

∣

∣

∣

∣

, (13)

wherer is the Kuramoto order parameter andz = ei∆θ (see Supplemental Materials Analysis

S3 for derivation20)). As shown in Fig. 5C, the length of the path graph determines whether the

IMPS converges from above or below. The models of shorter (longer) path graphs correspond

to models on Barab́asi–Albert and regular random networks (Watts–Strogatz networks). To

further examine how the dependence of IMPS onα is affected by the average path length,

we plot the difference between IMPS for a smallα and that for a largeα (Fig. S1).20) As

is consistent with Fig. 5C, the correlation coefficient r between the average path length and
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IMPS(α = 10) − IMPS(α = 100) on 50 Watts–Strogatz networks (N = 1000, rewiring

probability= 0.05) is negative (r = −0.43, p < 0.01). Other network metrics such as diameter

and radius are also correlated to IMPS’s difference. On the other hand, for Barabási–Albert

networks, the average path length is not significantly correlated to IMPS(α = 2.5)−IMPS(α =

100), probably owing to the narrow range of the average path length of randomly generated

50 Barab́asi–Albert networks (N = 1000). These observations suggest that the networks

with shorter average path lengths make the model more sensitive to changes in the coupling

strength of each vertex.

5. Discussion

In this paper, we reviewed the previously proposed metrics SPS and MPS, which quan-

tify the sensitivity of the output to the values of parameters. We formulated an improved

metric called IMPS, which we applied to series-resistor circuits and linear dynamical sys-

tems. By calculating the IMPS for series-resistor circuits,we found that IMPS gives identi-

cal results for equivalent circuits of Figs. 1B and 1C. The analysis and simulation of linear

dynamical models revealed that IMPS is less dependent on thenumber of particles in the

linear dynamical model. We also calculated IMPS for nonlinearly coupled phase oscilla-

tors on Barab́asi–Albert, regular random, and Watts–Strogatz networks.In all of these cases,

the IMPS converges to values close to 2. In the limit of a largecoupling strength, IMPS is

less dependent on the type of network, that is, the Barabási–Albert network, regular random

network, Watts–Strogatz network, and path graph. However,for a small coupling strength,

IMPSs differ among the types of network used to model the unknown system. Moreover, for

a small coupling strength, average path length negatively correlates to IMPS. Thus, for sys-

tems of phase oscillators on networks, our results show thatthe system with a shorter average

path length is more sensitive to parameter changes.

The IMPS gives identical results for equivalent circuits (Fig. 1). The invariance of IMPS

was previously reported only for resistor–capacitor networks.7–10) The analysis of the circuits

indicates that dividing an element into several elements orcombining several elements into a

single element does not change the IMPS. This is also the casewith the linear and nonlinear

dynamical systems. These results suggest that IMPS can be a more appropriate metric than

MPS in quantifying the sensitivity of unknown systems, because the precise number of ele-

ments in the system in question is often unknown. However, the conditions for the invariance

of IMPS may be satisfied only in a limited class of systems.

To use IMPS to compare the sensitivity of various systems, two points must be considered:
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(i) IMPS depends on the shift of the zeroes of parameters and (ii) IMPS depends on the

dimension of the units of parameters. As an example of the first point, assume the pressureP

as the output of a system consisting of an ideal gas in a cuboid. The ideal gas formula is

P =
nRT

V
, (14)

whereV is the volume of the gas,n is the number of moles of the gas in the cuboid,R is

the ideal gas constant, andT [K] is the absolute temperature in Kelvin of the gas. Here, we

assume thatR is a constant andn, T , andV are the parameters. The IMPS for this model is

3. If we give the temperatureC in Celsius, we haveT = C + 273. The IMPS for this model

expressed in Celsius is 2+ | C
C+273|. As an example of the second point, denote the width, depth,

and height of the cuboid byw, d, andh, respectively. This gives

P =
nRT
wdh
. (15)

The IMPS for this model expressed in terms ofn, T , w, d, andh is 5. Thus, the points of

zeroes of the parameters and the dimensions of units should be consistent between the models

describing systems. SPS and MPS also suffer from the same difficulty.

To summarize, in this paper, we investigated the IMPS with respect to the output of linear

and nonlinear models that can be approximately linearized.In strongly nonlinear systems,

such as chaotic systems, how their nonlinearity is reflectedin IMPS should be examined. In

addition, the relationship between IMPS and the Lyapunov exponent is of interest. Future

work should also consider the IMPS of other types of nonlinear system.
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