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The behavior of systems is determined by the parameters.uBecse seldom know the
detailed structure of a system, metrics of parameter s@tsghould be independent of how
we model the system. We formulate a new parameter sengigtric, which we refer to as
“invariant multiparameter sensitivity” (IMPS) becausgites the same result for a class of
equivalent models of a system. To investigate the propdrtiIBS, we firstly apply IMPS
to resistor circuits and linear dynamical systems. To erantine dependence of IMPS on
network structures, we secondly apply IMPS to nonlinearesys on complex networks. We
find that the IMPS of networks of phase oscillators is esaéiytindependent of the number
of oscillators. We examine the network-structure depeodef IMPS using a simplified
solvable model.

1. Introduction

Over the past few decades, research has increasingly fbomssocial, biological, eco-
nomical, ecological, and geological systetr8 The outputs of these systems depend on pa-
rameters. In these systems, the parameters may fluctuelbtastcally and undergo long-term
drift. Thus, understanding thdfect of variations in the parameters on the system outputs is
vital for understanding their dynamiés) For example, this approach is used to characterize
electric circuits that are insensitive to variations iniidual circuit element$®

In this study, we focus on the changes in the response ofreysigputs when the pa-
rameters are changed; this relation is referred to as tharpeter sensitivity” of the system.
Parameter sensitivity has been intensively studied iruttitbeory, particularly in resistor—
capacitor network$:19 Although parameter sensitivity was originally proposedvaluate
the sensitivity of electric circuits, it has also been usednany other fields, such as biol-
ogy*~13 ecology*¥ and economic$? Previous studies have proposed several metrics for
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Fig. 1. (Color online) Unknown heating system (A) and series resistodels (B,C). The models B and C
are electrically equivalent whe® + R, +--- + R, = R.

parameter sensitivit}: 1”) Single parameter sensitivity (SPS) is the ratio of the ckangut-

put to the change in parametérSince most systems have more than one parameter, gener-
alizing SPS to multiple parameters is the next logical Stéytiparameter sensitivity (MPS)

is a generalization of SPS for multiple parametér#1PS is defined as the square root of the
sum of the squares of SPSs of the system. MPS has been usealymig networks with
circuit elements$:*®19|n biology, MPS was used in clarifying how the integratiomudlec-

ular components generates robust systems such &stherichia coli heat-shock response
system and th®rosophila melanogaster circadian clock:?

The parameter sensitivity of a system is often numericatjneated by quantifying the
parameter sensitivity of its modéldl—'®Because, in most cases, we do not know the struc-
tures and dynamics of systems completely, a wide varietyaufets are proposed for a single
system. As an example, let us assume that we want to quamifyarameter sensitivity of the
system of Fig. 1A. When connected to a voltage solcthis system exhibits heat flow.
Here, we assume that this system comprises linear resigiggs under this assumption, this
system can be modeled by a large number of electric circuitatspsuch as those in Figs. 1B
and 1 C. Unfortunately, as will be shown in the next sectionS\Vf¥es diferent results for
the models in Figs. 1B and 1 C, which are electrically equivateodels of a single system of
Fig. 1A. Since MPS depends on the choice of the models, weot@uantify the parameter
sensitivity of the system using MPS.

To address this problem, we propose a new sensitivity methiach we call “invariant
multiparameter sensitivity” (IMPS). In Sect. 2, we briefgview previously proposed sensi-
tivity metrics and then define IMPS. We use the example ofkegsistor models to present
“invariance,” which is an important property of IMPS. In $€8, IMPS for linear dynam-
ical systems is examined. Furthermore, we study the IMP$®lase oscillator models on
complex networks in Sect. 4. IMPS is suggested to vary aaogtd network structures. Fi-
nally, in Sect. 5, we summarize the main results and dishwespaotential applications and
limitations of IMPS. Detailed derivations can be found irpBlemental Materials®
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2. Invariant Multiparameter Sensitivity

Models of dynamical systems are expressed by the first-alitferential equations

X=F (X p), (1)
where t is the time, X = [Xg, X, X3,...,%,] IS the state variable vector, and =
[pP1, P2, P3, - - -, Pm] IS the parameter vector. Letbe the output whose sensitivity to parame-

ters we want to quantify. Here, the output can be any valueetfrom the system, such as
oscillation period, cell growth rate, or energy consumptigor a given outpud, the single
parameter sensitivity with respect to the paramgtewhich we call SPSis defined as

pidq _ ding
SP$=—— = . 2
? qop dnp @)

SPSis the ratio of the change in the outppto the change in the parametgr'® SP$S does

not quantify the sensitivity ofj with respect to any other parameters. Generalizing SPS to
multiple parameters, Goldstein and Kuo defined MPS as theoki? iof SPS$®)

MPS” = Zm: SPS. 3)
i=1

MPS has been used to quantify the sensitivity of the outpahémges in the entire parameter
set of modelS: '8 ) However, MPS often gives flierent results for two equivalent models of
a system. Consider a model of a circuit with one resiB@s shown in Fig. 1B. Letl denote
the heat flow from the circuit and |& denote the voltage of the voltage source. We assume
that the heat flowH = E?/Ris the output of this model. Because the SPS of this circul wit
respect taR is unity, the MPS is also unity. A current-voltage relatibipsidentical to that
of Fig. 1B can also be implemented by equivalent circuitghsas that shown in Fig. 1C
(assumind®, + R, + ... + R, = R). The MPS of the circuit of Fig. 1C is given by
m 2
' OH
MPS = (5—)
; H R
m 2
R
D (4)
Hence, the MPS of this model decreasemascreases.
In contrast, the L1 norm of SPSs of the circuit for Fig. 1C i&egi by
m
R oH
ISPS Ty
2 2L[HaR
= 1 (5)

m

which equals the L1 norm of SPSs for the circuit of Fig. 1B. Thusintroduce a new metric

3/13



J. Phys. Soc. Jpn. FULL PAPERS

IMPS, which is the sum of all absolute values of SPSs:
m
IMPS = Z ISPS. (6)
i=1

The IMPS of the circuit is constant, regardlessnobecause the outpu is a homo-
geneous function of degre€l of resistance®,;, R, ..., andR;. Indeed, assuming that the
outputq(ps, P2, Ps3. - - - » Pm) IS @ homogeneous function of the degkeand that the SPSs in
Eq. (6) have the same sign, we obtain

m
pi dq
IMPS = ——
; qap
= |k, (7)
where we use Euler’s theorem
4 ]
N (—q) = Ka(P1. P2. P - - Pm)- (8)
i=1 apl

This is also the case with equivalent circuits of resistarparallel. These results suggest
that IMPS is independent of the models, and may be a metrigdantifying the sensitivity
of the system itself rather than the model. The IMPSs aredaheedor all models satisfying
the following conditions: (i) the output is a homogeneousction of the parameters and (ii)
the SPSs have the same sign. These conditions are not ndgessasfied. However, in the
following, we show that these conditions are approximasaliisfied in several models of

linear and nonlinear dynamics.

3. Linear Dynamics

There are many systems that can be modeled by elementsiingraith each othet*—24
As a simple example of these models, we examine a model ¢timigsid N particles. Assume
that particlel has the positiorx; and the velocityx, and is attracted to other particles via the
connection weight matri¥V = (W;). The matrixW is symmetric, has no negative elements,
and is assumed to define a connected graph of particles. fieedynamics are defined by

.odx N

Xi=a=bi+ZWij(Xj—Xi), 9
j=1

whereb; is the velocity of the particle with no interaction. The velocitl; is drawn from a

unit normal distribution. The positions of the particlesieerge to fixed points. The variance

V of the positions at the steady state is used as the outpueahtidel, whose sensitivity is

to be measured. We assume a connected graph because theevaaanot be defined when

particles become disconnected.
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Fig. 2. IMPS (solid line) and MPS (dashed line) for linear dynamioaldels. Panel A shows IMPS and MPS
as functions ofN. Panel B shows IMPS and MPS as functions of the number of abioms forN = 100.

By using the Laplacian matrilx of a weighted grapt? defined by the connection weight
matrix W, we obtain

1| Wypre o0 oy oy 00 Vo po
IMPS = = 3 |—grp-t( S pery - O g
N%:‘ Y, W, T aw,
L Borpapr-1, finf 1R
+N‘ BTl [L ), (10)

where() indicates the summation over the connected particle pﬂi[ﬂ:ij =Lij+B8.86#0is
introduced so that is invertible. IMPS is independent gf The detailed derivation is given
in Supplemental Materials Analysis 8% By assuming that all SPSs have the same sign, we
obtain IMPS= 2 because the variance is a homogeneous function of deg@reegardless of
network size and the structure given by the connection wergttrix W as shown in Eq. (S-
20).

Let us examine whether the result IMRS2 holds in numerical simulations. Figure 2A
shows that this relation holds for the network of all-to-@upling,W;; = 0 fori = j and
Wi = 1 otherwise, for a wide range &f. This suggests that all SPSs have the same sign in
this model. In contrast, the MPS decreasebl@ascreases (Fig. 2A).

In the simulation of Fig. 2B, we start from a fully connectedtsyn of sizeN = 100
and eliminate a connection at each step. We confirmedithadnstituted a connected graph.
Thus, the graph at each step is an &drRenyi random grapf® The IMPS and MPS are
shown in Fig. 2B as functions of the number of connectionss Tigure shows that MPS de-
pends much more strongly on the number of connections th&8LM herefore, these results
indicate that the condition that all SPSs have the same sigitmost satisfied. Moreover,
these results indicate that, for these linear models, tHeSMuantifies how sensitively the
system’s output, that is, the variance of the particle pmsst changes in response to a pa-
rameter change in a manner that is independeht ahd the number of connections.
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4. Phase Oscillator Networks

Let us consider a system of oscillatory elements on a netwoskillatory elements are
often modeled by phase oscillatdts’”-?®)Because the precise structure of a network may be
unknown to us, to investigate how IMPS i$exted by the choice of network structure used to
model the system, we compare IMPSs of phase oscillatorsedtiitbe types of network, that
is, Baralasi—Albert, regular random, and Watts—Strogatz netwdiksy, consider a model of
N oscillators connected to each other by the adjacency matex(A;;), whereA;; = 1 for
connected pairs andl; = 0 otherwise. The dynamics of the oscillat@re described by

dé, N
E = wj + ; Kij Siﬂ(@j - Qi), (11)

wherew; is the natural frequency of the oscillaicndKj; is the elementi( j) of the connec-
tion weight matrixK 2129 For the numerical simulation, we uke= A, wherea > 0 is the
coupling strength, and draw the natural frequesagcfrom a unit normal distribution. Without
loss of generality, we can assume thal, w; = 0. Fora, we use a sfliciently large value so
that all phase oscillators are phase locked. We use thdanirearianceV, of the oscillators
in the phase-locked stdféas the output:

1
chl—rzl—N\/C2+SZ, (12)

wherer is the Kuramoto order paramet&,= Y, cost;, andS = Y, sing;.

To simulate phase oscillators on complex networks, we usadfacency matrices given
by Baratasi—Albert? (a well-known model of scale-free networks) and reguladoan net-
works with an average degree of 4. We use outpuatt = 100 for Baraksi—Albert and
regular random networks. To generate a BasibAlbert network, we use Gephi complex
generators. We start from 2 connected vertices and addexweith 2 edges in each step un-
til we haveN vertices. We generate regular random networks with degrestngy the Matlab
Random Regular generator. The phases of all oscillators sirébdited uniformly at = 0.

By using the implicit function theorem, we derid¥./Ki; [Eq. (S-32)]°Y We calculate
the IMPS numerically using Eq. (S-3%).Unlike for equivalent electric circuits and linear
dynamical models, IMPSs for phase oscillator networks ateaonstant (Fig. 3). This result
is attributed toV, not being a homogeneous function. Figure 3A shows the gesfilt0 000
phase oscillators on 5 Barati—Albert networks and Fig. 3B shows the results of 10000
phase oscillators on 5 regular random networks generatetiffgrent random seeds. The
IMPSs converge to 2, as shown in Figs. 3A and 3B. This is becasgte coupling strength
a increases, the models can be described by linearized dgsafie nonlinear dynamics of
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Table I. Average path length of oscillator networks & 10 000)

Baralasi— | Regular 300-connection 3000-connection

Albert Random Rewired Watts—Strogatz Rewired Watts—Strogatz
Mean 5.03 7.73 36.1 10.9
Standard Deviation| 2.20x 107 | 1.53x 1073 | 0.343 2.88x 1072

Eq. (11) become the linear dynamics of Eq. (9), and the @rotdriance of Eq. (12) becomes
proportional to the variance in the largdimit.

In Fig. 4, for models on Bardisi—Albert networks, we compare the IMPS and MPS as
functions of coupling strength for models with diferentN values. As shown in Fig. 4A,
the IMPSs for models with dierentN values are close together. In contrast, as shown in
Fig. 4B, the MPSs for models with fiierentN values are well separated. IMPSs for models
with differentN values converge to the same value, 2, for the nonlinear rma@delell as the
linear models.

Next, to examine another type of complex network, we use dfscancy matrices given
by Watts—Strogatz networkswith an average degree of 4. We use the oukuatt = 200
for Watts—Strogatz networks. To generate a Watts—Strogaizork? we start from a regular
ring lattice with N vertices; each vertex is connected to 4 neighbors, 2 on adeh\#/e
randomly select an edge and rewire one of its endpoints stesidp either 300 or 3000
times. The phases of all oscillatorstat 0 are drawn from a Gaussian distribution with a
mean of 0 and a standard deviation of 0.1.

Figure 3C1 (3C2) shows the IMPS for 10000 phase oscillators atis\AStrogatz net-
works with 300 (3000) of 20 000 connections rewired. FiglB€4 and 3C2 are generated
using diferent random seeds. For the models on Watts—Strogatz rkstvedtthough the IMPS
approaches 2 asincreases, the IMPS deviates from 2 more than the IMPS fantidels on
Baratasi—Albert and regular random networks. As shown in Fig. 384 IMPS curves are
distributed more widely than those of Figs. 3A and 3B. Theltesiggests that the IMPS of
the models on Watts—Strogatz networks varies from netwmrietwork. On the other hand,
IMPSs are within a narrower range for Baaab-Albert and regular random networks. For
the models on Barasi—Albert and regular random networks, the IMPS convetg@srom
above, whereas, for models on Watts—Strogatz networkdMR& converges to 2 from be-
low. These observations suggest that the circular varifmrcBaratasi—Albert and regular
random networks changes much more sensitively dependittigearoupling strength of each
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Fig. 3. IMPS for 10000 oscillators on complex networks. IMPSs fag thodels on Barasi—Albert (A),
regular random (B), and 300-connection rewired Watts-¢&to (C1), and 3000-connection rewired Watts—
Strogatz (C2) networks are shown. In panels A and B, the aayiptrengthy varies from 2 to 8 in steps of 0.2.
In panel C1gq varies from 40 to 70 in steps of 1. In panel @2yaries from 5 to 35 in steps of 1.
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Fig. 4. IMPS and MPS for 100, 1000, and 10000 oscillators on BasafAlbert networks. (A) IMPS and
(B) MPS as functions of coupling strengthfor the models on Barasi—Albert networks. In both panels, the
coupling strengthw varies from 2 to 10 in steps of 0.2.

vertex than the circular variance for Watts—Strogatz nete/avhen the coupling strength
is small. This implies that IMPS reflects soméfeience in network structures and network
metrics among Barasi—Albert and regular random networks and Watts—Straggtizorks.

To clarify the factor reflected in IMPS, next we examine a able oscillator model. Com-
pared with Barabsi—Albert and regular random networks, Watts—Strogatworé&s have
longer average path lengths (Table I). Watts—Strogatzar&sihave a larger number of long
one-dimensional (1-D) lattice like structures (Fig. 5AatBaralasi—Albert and regular ran-
dom networks. To investigate thé&ects of 1-D lattice like structures, we simplify a regular
1-D lattice to a path graph, for which all vertices and edgesoh a single straight line
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Fig. 5. (Coloronline) One-dimensional lattice like structurettpgraph, and IMPS for path graphs offérent
lengths. Panel A shows a schematic of a 1-D lattice like sirec Panel B shows a path graph wiNhvertices.
Panel C shows the IMPS for models wittfdrent-length path graphs as a function of the coupling gthan
In panel C, the phases bdf oscillators are separated by regular intervals.

(Fig. 5B). WhenN phase oscillators are connected to each other along a @gih gnd have
natural frequenciesw; = wy = 1 andw; = 0 for 1 < i < N, their phases are separated by
regular intervals46). IMPSs for the oscillators on fierent lengths can be obtained as

N-1/-N+N@z-1)+1
m[z—l( (z—- 1) )}

tan(Ag)

IMPS = =D

: (13)

wherer is the Kuramoto order parameter ane €2¢ (see Supplemental Materials Analysis
S3 for derivatio”?). As shown in Fig. 5C, the length of the path graph determirtestier the
IMPS converges from above or below. The models of shorteg@o) path graphs correspond
to models on Barasi—Albert and regular random networks (Watts—Strogatwarks). To
further examine how the dependence of IMPSaois afected by the average path length,
we plot the diference between IMPS for a smalland that for a larger (Fig. S1)2° As

is consistent with Fig. 5C, the correlation ¢deentr between the average path length and
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IMPS(@ = 10) - IMPS(@ = 100) on 50 Watts—Strogatz networkd (= 1000, rewiring
probability= 0.05) is negativer(= —0.43, p < 0.01). Other network metrics such as diameter
and radius are also correlated to IMPS'felience. On the other hand, for Baaab-Albert
networks, the average path length is not significantly d¢ated to IMPS§ = 2.5)-IMPS(a =
100), probably owing to the narrow range of the average matbth of randomly generated
50 Baralasi—Albert networksN = 1000). These observations suggest that the networks
with shorter average path lengths make the model more sengitchanges in the coupling
strength of each vertex.

5. Discussion

In this paper, we reviewed the previously proposed metrRS 8nd MPS, which quan-
tify the sensitivity of the output to the values of paramstéie formulated an improved
metric called IMPS, which we applied to series-resistocuits and linear dynamical sys-
tems. By calculating the IMPS for series-resistor circuits,found that IMPS gives identi-
cal results for equivalent circuits of Figs. 1B and 1C. Thelysia and simulation of linear
dynamical models revealed that IMPS is less dependent onuimder of particles in the
linear dynamical model. We also calculated IMPS for nordnhe coupled phase oscilla-
tors on Barabsi—Albert, regular random, and Watts—Strogatz netwdrkall of these cases,
the IMPS converges to values close to 2. In the limit of a largepling strength, IMPS is
less dependent on the type of network, that is, the Besiallbert network, regular random
network, Watts—Strogatz network, and path graph. Howdger small coupling strength,
IMPSs difer among the types of network used to model the unknown sy$fiemeover, for
a small coupling strength, average path length negativaiyetates to IMPS. Thus, for sys-
tems of phase oscillators on networks, our results showthieagtystem with a shorter average
path length is more sensitive to parameter changes.

The IMPS gives identical results for equivalent circuitgy(F). The invariance of IMPS
was previously reported only for resistor—capacitor neke62% The analysis of the circuits
indicates that dividing an element into several elementoorbining several elements into a
single element does not change the IMPS. This is also theva#ts¢he linear and nonlinear
dynamical systems. These results suggest that IMPS can loeeaappropriate metric than
MPS in quantifying the sensitivity of unknown systems, hessathe precise number of ele-
ments in the system in question is often unknown. Howevergctimditions for the invariance
of IMPS may be satisfied only in a limited class of systems.

To use IMPS to compare the sensitivity of various systems pwnts must be considered:
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() IMPS depends on the shift of the zeroes of parameters @ntMPS depends on the
dimension of the units of parameters. As an example of thigpiisit, assume the pressure

as the output of a system consisting of an ideal gas in a cubbi&lideal gas formula is

nRT
P=— 14
V > ( )

whereV is the volume of the gas) is the number of moles of the gas in the cubdids

the ideal gas constant, aid[K] is the absolute temperature in Kelvin of the gas. Here, we
assume thaR is a constant and, T, andV are the parameters. The IMPS for this model is
3. If we give the temperatui@ in Celsius, we hav& = C + 273. The IMPS for this model
expressed in Celsius isrzﬁml. As an example of the second point, denote the width, depth,

and height of the cuboid by, d, andh, respectively. This gives
nRT
P —_ W_dh.

The IMPS for this model expressed in termsmfT, w, d, andh is 5. Thus, the points of

(15)

zeroes of the parameters and the dimensions of units shewdrsistent between the models
describing systems. SPS and MPS aldtesudrom the same diculty.

To summarize, in this paper, we investigated the IMPS wispeet to the output of linear
and nonlinear models that can be approximately linearigedtrongly nonlinear systems,
such as chaotic systems, how their nonlinearity is refleictédPS should be examined. In
addition, the relationship between IMPS and the Lyapungogeent is of interest. Future
work should also consider the IMPS of other types of nonlirsgatem.
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