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Abstract. The behavior of neuronal and other biological systems is
determined by their parameter values. We introduce a new metric to
quantify the sensitivity of output to parameter changes. This metric is
referred to as invariant multiparameter sensitivity (IMPS) because it
takes on the same value for a class of equivalent systems. As a simplifi-
cation of neuronal membrane, we calculate, in parallel resistor circuits,
the values of IMPS and a previously studied metric of parameter sen-
sitivity. Furthermore, we simulate phase oscillator models on complex
networks and clarify the property of IMPS.
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1 Introduction

A large number of mathematical models have been proposed in order to explain
complex phenomena in brain including learning, chaotic behavior and synchro-
nization [1, 2]. Because these models have many parameters, it would be desirable
to know how changes of parameter values influence the output of a model. Infor-
mation about the relationship between parameter changes and output of models
is indispensable in designing models, fitting parameters and understanding the
dynamics of systems [3, 4].

In this paper, we investigate parameter sensitivity, that is, the response of
output to small changes of parameters. Parameter sensitivity has been inten-
sively studied in circuit theory, particularly in resistor-capacitor networks [4–7].
In biochemical modeling, metrics of sensitivity are also used in quantifying ro-
bustness of systems [8]. In neuronal modeling and machine learning, it is impor-
tant to estimate how sensitively output, such as firing rate and generalization
error, changes in response to small parameter changes.

Several metrics of parameter sensitivity have been proposed in previous stud-
ies. Single parameter sensitivity (SPS) allows us to quantify the output changes
in response to small change of a single parameter. Multiparameter sensitivity
(MPS) is a generalization of SPS to multiple parameters [9]. MPS is defined as
the square root of the sum of the square of SPSs. However, as will be shown later,



2 Kenzaburo Fujiwara, Takuma Tanaka, Kiyohiko Nakamura

R

IV

R’

R’2

BA

V

1

I
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MPS gives different values for such equivalent electric circuits as in Fig. 1(A)
and Fig. 1(B).

We propose in this paper a new metric of sensitivity, which we call invariant
multiparameter sensitivity (IMPS). This paper is organized as follows. In sec-
tion 2, we introduce sensitivity metrics previously proposed and define IMPS.
Then we derive basic properties of IMPS. In section 3, we examine properties
of IMPS by applying it to a simple circuit. In section 4, we further investigate
IMPS for nonlinearly coupled oscillators. Since it was reported that networks in
brain are scale-free networks [10], in which the number of connections of each
vertex obeys a power-law distribution, we examine the system of oscillators on a
scale-free network. In section 5, we summarize our results and discuss potential
applications.

2 Parameter Sensitivity

Dynamical systems are expressed by first-order differential equations

ẋ = F (t,x,p) , (1)

where t is time, x = [x1, x2, x3, . . . , xn] is the state variable vector and p =
[p1, p2, p3, . . . , pm] is the parameter vector.

For the output q of the system, single parameter sensitivity for parameter pi,
which we call SPSi, is defined as

SPSi =
pi
q

∂q

∂pi
=

∂ ln q

∂ ln pi
. (2)

SPSi is the ratio of the change of output q to the change of parameter pi.
However, SPSi does not quantify sensitivity to the change of other parameters.
MPS, which is defined as

MPS2 =
m
∑

i=1

SPS2i , (3)
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is known as a metric to estimate sensitivity to the change of the whole parameter
set of the system [9, 7]. As shown in the next section, MPS often gives differ-
ent values for two equivalent models, and thereby MPS is not appropriate for
comparing sensitivities between models. Thus, we introduce a new metric, invari-
ant multiparameter sensitivity (IMPS). IMPS is defined by the sum of absolute
values of SPSs as

IMPS =

m
∑

i=1

|SPSi| . (4)

IMPS gives the same values for equivalent models in many cases. Assuming that
q(p1, p2, p3, . . . , pm) is a homogeneous function of degree k and that SPSs in
equation (4) have the same sign, we obtain

IMPS =
m
∑

i=1
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m
∑

i=1

pi
q

∂q

∂pi

∣

∣

∣

∣

∣

= |k| , (5)

where we used Euler’s theorem

p1

(

∂q

∂p1

)

+ p2

(

∂q

∂p2

)

+ · · ·+ pm

(

∂q

∂pm

)

= kq(p1, p2, p3, . . . , pm). (6)

Hence IMPS is constant. IMPS is invariant for all models satisfying the fol-
lowing conditions: (1) the outputs are expressed by homogeneous functions of
parameters; and (2) SPSs take on the same sign.

3 Circuit Toy Models

In this section we examine circuit toy models. Consider that there is one resistor
R in a circuit as in Fig. 1(A). We denote the electric energy consumption by W
and the voltage of the voltage source by V . We assume that W is the output.
MPS of this circuit equals 1. The same current-voltage relationship as the circuit
shown in Fig. 1(A) can be realized by the circuits equivalent to it such as that
in Fig. 1(B) if R = R′

1
R′

2
/(R′

1
+R′

2
). MPS of the circuit in Fig. 1(B) is given by

MPS2 =

n
∑

i=1

SPS2i

=

2
∑

i=1

(

R′
i

W

∂W

∂R′
i

)2

=

(

R′
2

R′
1
+R′

2

)2

+

(

R′
1

R′
1
+R′

2

)2

< 1. (7)
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Thus, MPS of the circuit in Fig. 1(B) is less than MPS of that in Fig. 1(A). In
contrast, IMPS of the circuit in Fig. 1(B) is given by

IMPS =

n
∑

i=1

|SPSi|

=
R′

2

R′
1
+R′

2

+
R′

1

R′
1
+R′

2

= 1, (8)

which equals IMPS of that in Fig. 1(A). It can be easily shown that IMPS is
the same for the energy consumption of the equivalent RC circuits, by which the
electric properties of neuronal membrane have been modeled [1].

4 Nonlinear Model

In this section, we investigate the IMPS of the system of phase oscillators on a
Barabási–Albert network as an example of neuronal networks. Barabási–Albert
model is the most thoroughly studied scale-free network model [11]. We generate
Barabási–Albert networks with average degree of 4. We start from 2 vertices and
add a vertex with 2 edges in each step until we have N vertices.

We assume that N oscillators are connected to each other by the adjacency
matrix ABA of a Barabási–Albert network. The dynamics of oscillator i are
described by

dθi
dt

= ωi +

N
∑

j=1

Kij sin(θj − θi), (9)

where Kij is the (i, j)-element of the connection weight matrix defined by K =
αABA and the natural frequency ωi is drawn from the Gaussian distribution with
unit variance. We assume that

∑N
i=1

ωi = 0 without loss of generality. Here, α
is the connection strength. We use the circular variance V of the oscillators

V = 1− r = 1−
1

N

√

C2 + S2 (10)

in the phase-locked state as an output, where r is the Kuramoto order parameter,
C =

∑N
i=1

cos θi and S =
∑N

i=1
sin θi.

In the phase-locked state, the right-hand side y′i of equation (9) is 0, that is,

y
′ = 0. (11)

Here we derive the relationship between the connection weights and the phases
under the condition that equation (11) is satisfied. Assuming that ∆K is small,
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we obtain

y′i +∆y′i = ωi +

N
∑

j=1

(Kij +∆Kij) sin(θj +∆θj − θi −∆θi)

≈ ωi +

N
∑

j=1

(Kij +∆Kij) [sin(θj − θi) + cos(θj − θi)(∆θj −∆θi)] .

(12)

Subtracting y′i from both sides yields

∆y′i ≈

N
∑

j=1

Kij cos(θj − θi)(∆θj −∆θi)

+

N
∑

j=1

∆Kij [sin(θj − θi) + cos(θj − θi)(∆θj −∆θi)] . (13)

Thus we obtain

∂y′i
∂θj

≡ J ′
ij , (14)

∂y′i
∂Klm

=

{

sin(θm − θl) i = l

0 i 6= l
, (15)

where

J ′
ij =

{

−
∑N

s=1
Kis cos(θs − θi) i = j

Kij cos(θj − θi) i 6= j
. (16)

J’ is of N −1 rank, because Laplacian matrices of connected graphs are of N −1
rank [12]. Adding the same value to all θi’s of a phase-locked solution results
in another phase-locked solution, and the latter cannot be distinguished from
the former in terms of V . Thus we cannot determine the unique phase-locked
solution for this model. However, we can set the average phase to 0, which
will not ruin the generality of our argument, because we are interested only in
circular variance V of the oscillators. Assuming

∑N
i=1

θi = 0, we can replace
equation (11) with

yi ≡ ωi +

N
∑

j=1

Kij sin(θj − θi) +

N
∑

j=1

θj = 0. (17)

Hence ∂yi/∂θj can be derived as

∂yi
∂θj

= J ′
ij + 1 ≡ Jij . (18)
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J is full rank. Thus we have

∂θi
∂Klm

= −

N
∑

j=1

(J−1)ijδjl sin(θm − θl)

= −(J−1)il sin(θm − θl). (19)

Hence the derivative of V with respect to Klm is given by

∂V

∂Klm
= −

1

2N

(

C2 + S2
)−1/2

∂

[

(

∑N
i=1

cos θi

)2

+
(

∑N
i=1

sin θi

)2
]

∂Klm

=
1

N2r

(

S

N
∑

i=1

cos θi(J
−1)il − C

N
∑

i=1

sin θi(J
−1)il

)

sin(θm − θl). (20)

From the above analysis, we numerically obtain IMPS as

IMPS =
∑

〈lm〉

|SPSlm| =
∑

〈lm〉

∣

∣

∣

∣

Klm

V

∂V

∂Klm

∣

∣

∣

∣

, (21)

where 〈〉 is the summation over the connected oscillator pairs. In the initial state,
all phases are uniformly distributed. When α is sufficiently large, the oscillators
are phase locked as shown in Fig. 2. We calculate the IMPS for various values
of α under phase-locked conditions.

 0

 0.5π

 π

 1.5π

 2π

 0  1  2  3  4  5

θ

Time

i

Fig. 2. Synchronization of 1000 oscillators on a Barabási–Albert network with average
degree of 4. Phases of 4 out of 1000 oscillators are shown. The connection strength α
is set to 2.

The IMPS of this model is shown in Fig. 3. IMPS gives similar values for
system size N = 1000 (Fig. 3A) and 10000 (Fig. 3B), whereas MPS exhibits
system-size dependency (Fig. 3C). Unlike the toy circuit model in section 3,
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Fig. 3. IMPS of oscillator networks with N = 1000 (A) and N = 10000 (B). Panel A
shows the results of networks generated by 5 different random seeds. Panel C shows
the MPS for N = 1000 (dashed line) and the MPS for N = 10000 (solid line).

IMPS for this system of phase oscillators does not take on a constant value be-
cause of the nonlinearity of this system. If α is sufficiently large, the nonlinearity
of sine coupling is ignorable. Therefore, as α increases, IMPS of this oscillator
system converges to 2 because the circular variance V of this model converges
to a homogeneous function of degree −2.

5 Discussion

In this paper, we have reviewed the previously proposed metrics, SPS and MPS,
which quantify parameter sensitivity. We have formulated an improved metric,
IMPS. IMPS gives the same value for equivalent models in many cases. This
gives IMPS a significant advantage over MPS, which gives different values for
equivalent systems. In the analysis of the simple circuits, IMPS has given the
same value for equivalent parallel circuits. Then we have applied IMPS to non-
linear complex systems. As a first step for applying IMPS to neuronal systems,
we have used the phase oscillator model and the Barabási–Albert model because
those two models are widely used in the previous research [11, 13, 14].

Formerly, invariance of IMPS was reported only for RC network circuits [4–
7]. In this paper, we have shown its invariance in a wider setting than previous
studies. In the system of phase oscillators, IMPS is not always invariant because
of the nonlinearity. Our results suggest that IMPS is a metric reflecting both
structure and dynamics of the systems. Thus IMPS would allow us to estimate
the dynamics and excitability of individual neurons and synaptic connectivity
between neurons.

In a future work, it should be examined how structure and nonlinearity of
systems are reflected in the value of IMPS. In particular, we will apply IMPS to
the system of neurons on a Watts–Strogatz small-world network [15]. Further-
more, the relation between IMPS and previously proposed network metrics, such
as cluster coefficient and average path length [15, 16], should be investigated. The
application of IMPS to the real neuronal networks is also of interest.
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